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Automated Creativity Prediction Using Natural Language Processing and 
Resting-State Functional Connectivity: An fNIRS Study
Cong Xie a, Simone Luchini b, Roger E. Beaty b, Ying Dua, Chunyu Liua, and Yadan Li a,c

aShaanxi Normal University; bPennsylvania State University; cShaanxi Normal University Branch, Collaborative Innovation Center of Assessment 
toward Basic Education Quality at Beijing Normal University

ABSTRACT
Evidence from fMRI research indicates that individual creative thinking ability – defined as perfor-
mance on divergent thinking tasks, subjectively assessed by human raters – can be predicted based 
on the strength of functional connectivity (FC) between the brain’s default mode network (DMN) 
and frontoparietal control network (FPCN). Here, we sought to replicate and extend these findings 
in two ways: 1) using a natural language processing method to objectively quantify creative 
performance (instead of subjective human ratings), and 2) employing functional near-infrared 
spectroscopy (fNIRS), a neuroimaging method that allows measuring brain activity in more natur-
alistic settings (compared to fMRI). By applying elastic-net regression to resting-state functional 
connectivity data, we constructed two separate prediction models to predict participants’ creative 
performance based on static FC and dynamic FC respectively. Results from the static network 
analysis indicated that fNIRS-functional connectivity between the DMN and FPCN can reliably 
predict creative ability (assessed objectively via natural language processing; R2 = .38). Moreover, 
we show that dynamic DMN-FPCN functional connectivity predicts creative ability nearly twice as 
strong as static connectivity (R2 = .67). Our work demonstrates that objective measures of creativity 
can be predicted from resting-state functional connectivity and that the procedure can be effi-
ciently implemented within highly naturalistic settings with fNIRS.
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Introduction

Creativity is often operationalized as the ability to gener-
ate both novel and appropriate ideas (Abraham, 2018; 
Diedrich, Benedek, Jauk, & Neubauer, 2015; Runco & 
Jaeger, 2012). Cognitive theories of creativity emphasize 
the interplay of bottom-up/generative processes (e.g., 
making novel conceptual combinations in semantic 
memory) and top-down/evaluative processes (e.g., deter-
mining whether associations are appropriate, and elabor-
ating on them; Barr, Pennycook, Stolz, & Fugelsang, 2014; 
Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014; 
Chrysikou, 2019; Ellamil, Dobson, Beeman, & Christoff, 
2012; Ivancovsky, Shamay-Tsoory, Lee, Morio, & 
Kurman, 2019; Nijstad, De Dreu, Rietzschel, & Baas, 
2010). At the neural level, generative and evaluative pro-
cesses are thought to correspond to the brain’s default 
mode network (DMN) and frontoparietal control net-
work (FPCN), respectively, with several studies finding 
that individual creative ability – is assessed via perfor-
mance on divergent thinking tasks, based on human 
creativity ratings – can be predicted from the strength of 

functional connectivity (FC) between DMN and FPCN 
(e.g., Beaty, Benedek, Kaufman, & Silvia, 2015; Beaty et al., 
2018; Shi et al., 2018).

In the present research, we aimed to extend this work 
by leveraging computational models of semantic dis-
tance, which offer an automated and objective approach 
to creativity assessment. We tested whether these objec-
tive creativity metrics could be predicted using machine 
learning models trained on functional near-infrared 
spectroscopy (fNIRS) data – specifically between the 
DMN and FPCN – extending past fMRI work using 
a neuroimaging method that is conducive to studying 
creativity in naturalistic contexts.

Brain networks and creative thinking

Creativity research is increasingly focused on linking 
cognitive processes to the activity of large-scale brain 
networks, including the DMN and FPCN (Beaty, Seli, & 
Schacter, 2019; Benedek & Fink, 2019). The DMN spans 
various posterior and midline parietal regions and is 
typically associated with spontaneous, memory-based 
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processes, such as mind-wandering and free association 
(Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 
2015). Associative abilities – which rely on connecting 
concepts in semantic memory (Kenett et al., 2018; 
Mednick, 1962) – have been found to partially mediate 
the relationship between resting DMN activity and per-
formance on divergent thinking tasks (Liu et al., 2021; 
Marron, Berant, Axelrod, & Faust, 2020; Ovando-Tellez 
et al., 2021). The DMN has been linked to semantic and 
episodic memory retrieval (Buckner et al., 2008; Raichle, 
2015), which has been shown to underpin creative 
thinking (Beaty et al., 2020; Madore, Thakral, Beaty, 
Addis, & Schacter, 2019). Moreover, increased gray mat-
ter density within regions associated with the DMN has 
been linked to higher creative abilities (Kuhn et al., 
2014). In contrast, the FPCN encompasses lateral pre-
frontal and anterior inferior parietal brain areas and is 
associated with primary executive abilities such as goal 
maintenance, inhibition, and attentional control 
(Niendam et al., 2012). Executive control is in turn 
thought to guide and constrain spontaneous associative 
processes, such as inhibiting unoriginal ideas (e.g., Beaty 
& Silvia, 2012; Benedek, Jauk, Sommer, Arendasy, & 
Neubauer, 2014).

Functional connectivity of the DMN and FPCN is 
hypothesized to support creative thinking through goal- 
directed memory search and the flexible integration of 
knowledge (Beaty, Benedek, Silvia, & Schacter, 2016). 
DMN-FPCN connectivity has been repeatedly demon-
strated by previous neuroimaging efforts showing 
increased cooperation between the DMN and FPCN 
during creative cognition (Beaty et al., 2015) and artistic 
performance (Ellamil et al., 2012; Pinho, de Manzano, 
Fransson, Eriksson, & Ullen, 2014).

Investigations of FC underlying creativity have bene-
fited from the advancement of connectomic analyses. 
These methods, such as connectome-based predictive 
modeling (CPM), allow for the prediction of human 
behavior, cognitive abilities, and individual differences, 
from measures of whole-brain FC (Shen et al., 2017). 
CPM has recently been employed to identify functional 
connectivity underlying individual differences in diver-
gent thinking (Beaty, Kenett, et al., 2018; Beaty, Chen, et 
al., 2018). In this work, a neural model was built by 1) 
training the model on creative performance scores (crea-
tivity ratings) and functional magnetic resonance ima-
ging (fMRI) data acquired during divergent thinking, 2) 
internally testing the model via a leave-one-out proce-
dure (to predict the creative performance of individuals 
in the sample), and 3) externally validated the model on 
new participants from independent datasets (to predict 
creativity outside of the sample used to construct the 
model). Highly creative individuals were distinguished 

by stronger functional connectivity between the DMN, 
FPCN, and the salience network (involved in switching 
between DMN and FPCN; Uddin, 2015). In contrast, 
less creative individuals showed stronger connections 
between DMN, cerebellar, and sensory hubs. Other stu-
dies have since successfully employed CPM to analyze 
different facets of creativity, strengthening the notion 
that FC can predict individual creative ability (Frith 
et al., 2021; Ren et al., 2021).

Static and dynamic brain network interactions

Functional connectivity between DMN and FPCN dur-
ing creative task performance is hypothesized to reflect 
the cooperation of spontaneous/generative and strate-
gic/evaluative processes, respectively. However, it is 
unclear whether the generation and evaluation phases 
of creative cognition are sequential or whether people 
dynamically switch between the two. At the neural level, 
this switching may manifest in the rapid shifting 
between the FPCN and DMN (i.e., dynamic connectiv-
ity), rather than a largely stable FC state (i.e., static 
connectivity). In one recent study on dynamic FC and 
divergent thinking, Li et al. (2017) identified four alter-
nating connectivity “states” – recurring patterns of cor-
relation between brain networks – two of which strongly 
overlapped with a series of DMN hubs. Crucially, highly 
creative individuals showed a higher frequency of 
switching between these two states during rest. 
Furthermore, Sun et al. (2019) found that variability in 
resting-state FC between the DMN and several attention 
networks (partly overlapping with FPCN) positively cor-
related with verbal creativity, and Feng et al. (2019) 
demonstrated how the integration of the FPCN and 
DMN relates to verbal creative performance.

In another fMRI investigation of dynamic FC, tem-
poral variability of network inter-connectivity was 
observed during creative activity (Beaty et al., 2015). At 
the beginning of a divergent thinking task, the authors 
reported increased coupling of the salience network and 
DMN, followed by a predominant coupling of the DMN 
and FPCN in the later stages. They interpreted the find-
ings as indicative of early idea generation (DMN- 
salience connectivity) and later idea evaluation (DMN- 
FPCN connectivity). In a related study, participants with 
high trait levels of Openness (a personality trait strongly 
linked to creativity) demonstrated longer periods of 
resting-state functional coupling between the DMN, 
FPCN, salience, and dorsal attention networks (Beaty 
et al., 2018). Combining dynamic and static connectivity 
findings points toward the likelihood that creativity rests 
upon a cooperative interplay of various brain networks, 
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and respective subnetworks, engaged in both parallel 
and an alternating fashion, depending on specific cog-
nitive demands.

Most FC studies of creativity noted above focused on 
large-scale networks, particularly when attempting to 
define whole-brain patterns of FC. The question of how 
specific brain regions within these large networks con-
tribute to creativity remains less well understood. 
A recent study found increased resting-state FC between 
the IFG, a hub of the FPCN, and the medial prefrontal 
cortex (MPFC), a hub of the DMN, during divergent 
thinking (Takeuchi et al., 2017). Another study examined 
individuals with organic lesions of the MPFC who pre-
sented with concept generation deficits, supporting evi-
dence for the causal role of the DMN in idea generation 
(Bendetowicz et al., 2018). Studies using transcranial 
direct current stimulation (tDCS) have shown that the 
bilateral IFG (e.g., Khalil, Karim, Kondinska, & Godde, 
2020; Mayseless & Shamay-Tsoory, 2015) and dorsolat-
eral prefrontal cortex (e.g., Vanderhasselt, De Raedt, & 
Baeken, 2009; Xiang et al., 2021) support control-related 
functions relevant for creative thinking. Assessing white 
matter projections, researchers distinguished the crucial 
role played by a sub-portion of the right DLPFC in 
driving patterns of brain activity and ultimately deter-
mining divergent thinking ability (Kenett et al., 2018); 
they also identified activity in the posterior-anterior sec-
tion of the medial frontal gyrus as correlating with crea-
tive performance, possibly evidencing its role in 
facilitating the switching between the DMN and FPCN.

In a recent study attempting to define the differential 
engagement of internal and external attention in diver-
gent thinking, Benedek and colleagues reported a higher 
engagement of the right anterior inferior parietal lobule, 
a cortical component of the FPCN, in a condition 
requiring internally directed attention (Benedek et al., 
2016). This observation is consistent with the hypothesis 
that idea generation largely relies on the engagement of 
internally directed attentional processes (Benedek, Jung, 
& Vartanian, 2018), evidencing how the FPCN may be 
responsible for driving self-generated thought and the 
filtration of irrelevant external stimulation. In a further 
segmentation of the FPCN, Beaty, Cortes, Zeitlen, 
Weinberger, and Green (2021) reported how different 
frontoparietal subnetworks may subserve different cog-
nitive processes in creative thinking. In this vein, it is 
crucial that neuroscientific research shift toward the 
definition of smaller-scale interactions within networks 
such as the DMN and FPCN. This may be investigated 
by parsing the FC within each network at the edge (i.e., 
connection) level to expose the specific engagement of 
sub-structures supporting creativity.

Objectively measuring creativity based on natural 
language processing

Divergent thinking tasks, arguably the most common 
paradigm for creativity assessment, have classically 
relied on human ratings for the evaluation of responses 
(Said-Metwaly, Noortgate, & Kyndt, 2017). This subjec-
tive approach generally involves the human rating of 
ideas in terms of fluency (quantity) and originality 
(quality; Jauk, Benedek, & Neubauer, 2014; Reiter- 
Palmon, Forthmann, & Barbot, 2019; Silvia et al., 
2008). Performance on divergent thinking tasks has 
been crucially linked to creative achievement, 
a measure of real-life creative accomplishment in the 
arts and sciences (Kim, 2011). Despite such evidence for 
the validity of human creativity ratings, questions have 
been raised regarding their subjectivity, which threatens 
psychometric properties such as reliability – particularly 
when raters disagree on what is a more or less creative 
idea – as well as reproducibility in neuroscience research 
on creativity. Given these limitations, researchers are 
increasingly exploring whether creativity assessment 
can be made more objective and standardized (Beaty & 
Johnson, 2021; Dumas, Organisciak, & Doherty, 2020; 
Prabhakaran, Green, & Gray, 2013).

A possible solution to this issue has been put forward 
in the form of computational models of semantic analy-
sis (i.e., natural language processing, NLP), leveraging 
principles of distributional semantics to objectively eval-
uate creative output (Kenett, 2019). The semantic rela-
tionships between words in response to a verbal 
creativity task can be calculated by applying NLP. The 
links between semantic distance and creativity rest upon 
the notion that novel ideas are constituted by the retrie-
val and recombination of distant concepts within 
semantic memory networks (Kenett et al., 2018; 
Mednick, 1962).

Semantic distance has been applied to automatically 
score the alternate uses task (AUT), with past work show-
ing that such models provide an even better representa-
tion of semantic originality than human judgments 
(Forster, Dunbar 2009). A recent investigation of seman-
tic distance applied to the AUT demonstrated its validity 
in predicting both subjective creativity ratings on the 
AUT (Beaty & Johnson, 2021; Dumas et al., 2020) and 
external measures of creativity, including real-world crea-
tive achievements (Beaty & Johnson, 2021). Indeed, 
reported correlations between semantic models and 
human creativity ratings have been quite large, exceeding 
.9 (at the latent level) in one recent study (Beaty & 
Johnson, 2021), pointing to a considerable agreement 
between human- and machine-derived creativity metrics.

CREATIVITY RESEARCH JOURNAL 3



Moreover, by applying NLP methods, the measure-
ment of classic metrics of creativity (i.e., fluency, flex-
ibility, and originality) can be refined by overcoming the 
reliance on subjective rating measures. For instance, 
Johnson, Cuthbert, and Tynan (2019) objectively com-
puted idea diversity/flexibility by calculating semantic 
distance scores – an index of word-pair similarity based 
on co-occurrence probabilities extracted from large-text 
corpora. Johnson et al. (2019) proposed that one’s crea-
tive ideas should be evaluated against group-derived 
metrics to comprehensively reveal his or her creative 
thinking process. Distributional semantic modeling of 
semantic distance uniquely allows one to leverage large 
repositories of human natural language, permitting this 
process to be achieved exhaustively and with minimal 
resources. Nevertheless, studies that selectively leverage 
semantic distance to investigate creativity will inevitably 
focus on the respective divergence of creative ideas (i.e., 
originality), neglecting other metrics like fluency and 
flexibility. Of note, both fluency and flexibility are also 
typically determined by subjective human-rater techni-
ques and should thus be considered for inclusion in 
modern computational scoring techniques.

Notably, the combined use of computational seman-
tic models and neuroimaging methods provides an 
entirely objective approach to studying creativity, at 
both the cognitive and the neural levels. This purely 
quantitative approach presents an opportunity to pro-
duce highly replicable findings, compared to studies 
using human ratings, which can vary based on raters’ 
idiosyncratic perceptions of creativity.

The present study

Increasing neuroimaging evidence points to the central 
role of the DMN and FPCN in creative thinking, poten-
tially reflecting the cooperation of generative and evalua-
tive cognitive processes (Beaty et al., 2016). Other work 
has shown that individual variation in DMN-FPCN con-
nectivity can predict a person’s creative performance, 
based on human evaluations of creativity (Beaty et al., 
2018; Shi et al., 2018). In the present research, we sought 
to replicate and extend these findings in two ways: 1) 
using computational models to objectively quantify crea-
tive performance (instead of subjective human ratings) 
based on NLP, and 2) employing functional near-infrared 
spectroscopy (fNIRS), a neuroimaging method that 
allows measuring brain activity in more naturalistic set-
tings (compared to fMRI).

To this end, we applied an elastic-net regression to 
investigate the contribution of DMN and FPCN 
(assessed during a resting-state scan) to divergent think-
ing performance on the AUT (assessed after the scan). In 

addition to static connectivity, for the first time, we test 
the predictive power of dynamic connectivity between 
DMN and FPCN. Here, the variability in the RSFC 
between specific brain regions was obtained by calculat-
ing the functional connectivity variability (FCV) – 
a widely used metric of dynamic functional connectivity 
that computes the variability of weights using a sliding 
window approach (Mooneyham et al., 2017). Taken 
together, we examine whether findings from the fMRI 
literature can be extended to more naturalistic contexts 
using fNIRS and computational approaches to quantify-
ing creativity, providing a model for objectively studying 
the neural basis of creativity outside the scanner.

Methods

Participants and general procedure

Seventy undergraduate students (59 females and 11 
males, mean age = 20.12, SD = 0.60) were recruited for 
the present study. All were right-handed and with nor-
mal or corrected to normal vision. One participant was 
excluded due to incomplete performance on the creativ-
ity tests; five more were excluded for low-quality fNIRS 
data, assessed with the HOMER2 toolbox (Huppert, 
Diamond, Franceschini, & Boas, 2009). The final sample 
was comprised of 64 participants (53 females and 11 
males, mean age = 20.05, SD = 0.61).

Upon arrival, all participants were asked to sign an 
informed consent form. They initially underwent 
a 3-min resting-state fNIRS recording with their eyes 
closed and a 3-min resting-state fNIRS recording with 
their eyes open. Relatively short scan duration was 
implemented to avoid possible biases resulting from 
the fluctuations between wakeful and drowsy/sleep 
states, which have been shown to arise when scan dura-
tions exceed 3 min (Tagliazucchi & Laufs, 2014). Only 
the data from later sessions were analyzed to avoid 
capturing the signals’ jitter present at the very beginning 
of the scanning. Participants were instructed to refrain 
from falling asleep or mentally fixating on specific 
thoughts during the resting phase. After the resting- 
state scan, participants completed the object character-
istics task (OCT) and the AUT (see 2.4 Behavioral tasks 
and measurements).

fNIRS data acquisition and preprocessing

An fNIRS optical topography system (LABNIRS, 
Shimadzu Corporation, Kyoto, Japan) was used to mea-
sure the brain’s hemodynamic response during rest. For 
each participant, three probe sets were placed over their 
scalp: one over the region of the prefrontal cortex (PFC; 
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2*7 optode probe set, resulting in 19 channels) and two 
placed bilaterally over the temporoparietal junction 
(TPJ; 3*3 optode probe set, resulting in 12 channels for 
each side) – corresponding to cortical hubs of the FPCN 
and DMN, respectively (see Figure 1). The distance 
between each adjacent probe was 30 mm, and the sam-
pling rate was set to 10 Hz. The probe positions were 
obtained using a three-dimensional (3D) magnetic space 
digitizer (FASTRAK; Polhemus, Colchester, VT, USA). 
A probabilistic registration (Singh, Okamoto, Dan, 
Jurcak, & Dan, 2005) was used to determine Montreal 
Neurological Institute (MNI) coordinates, in accordance 
with the international 10–20 system.

The data were preprocessed using the HOMER2 tool-
box in MATLAB (Huppert et al., 2009). Given that 
oxyhemoglobin (HbO) has a higher sensitivity to 
changes in cerebral blood flow compared to deoxyge-
nated hemoglobin (HbR), further analyses were based 
solely on changes in HbO (e.g., Cui, Bryant, & Reiss, 
2012). The raw optical data was converted into changes 
in optical density. The hmrMotionArtifactByChannel 
function was run to determine any motion artifacts 
and the hmrMotionCorrectSpline function served for 
their correction. Moreover, we applied a bandpass filter 
with cutoff frequencies set from 0.01 Hz to 0.10 Hz, 
removing channels with an unacceptable signal quality 
from any further analysis (Kamran, Mannan, & Jeong, 
2016; Mayseless, Hawthorne, & Reiss, 2019). Data from 
the following channels were ultimately discarded due to 
unacceptable signal quality determined in HOMER2: 
CH2, CH5, CH15, CH18, and CH20.

Functional connectivity network construction

After preprocessing the raw data, static and dynamic 
networks were separately constructed. The static net-
works were generated by calculating Pearson correla-
tions, with Fisher Z transformations, between each 
channel pair. This approach yielded a 38 × 38 correla-
tion matrix for each participant.

For the dynamic network construction, we initially 
calculated sliding window correlations (SWC; Allen 
et al., 2014) with window lengths of the 60s and step 
lengths of 1s (Urquhart, Wang, Liu, Fadel, & 
Alexandrakis, 2020). Pearson correlations were calcu-
lated between the channel pairs, separately for each 
time window, and a Fisher Z transformation was 
then applied to the data. For each participant, the 
functional connectivity variability (FCV) was 
obtained by calculating the standard deviation for 
the correlation coefficients, defined in terms of varia-
bility over time (Fong et al., 2019). The general 
procedure for the construction of the FC matrix is 
depicted in Figure 2.

Behavioral tasks and measurements

Following scanning, participants completed two tasks: the 
AUT and OCT. The AUT was used to assess divergent 
thinking ability. Participants were asked to think of as 
many unusual uses as possible for a common item (e.g., 
“brick”). Three items were used as targets in the AUT: 
“knife,” “chopsticks,” and “newspapers.” For each item, 
participants had 1.5 min to verbalize their responses, 
which were recorded through a microphone.

To objectively score AUT responses, we used 
a computational semantic analysis developed by Shen 
and Shao (2019), a topic modeling method based on 
Jieba (a Chinese text segmentation algorithm; Sun, 
2013) and Word2Vec (a common method to calculate 
semantic distance; Mikolov, Sutskever, Kai, Corrado, & 
Dean, 2013). As mentioned before, semantic distance 
has been widely adopted in the study of creativity, espe-
cially in automatically evaluating ideas on the AUT (e.g., 
Beaty & Johnson, 2021; Green, 2016; Heinen & Johnson, 
2018). Here, we apply the semantic algorithm of Shen 
and Shao (2019) to calculate the three classic metrics of 
divergent thinking: fluency, flexibility, and originality. 
Similar to previous studies, which applied semantic dis-
tance scoring to quantitatively determine aspects of 

Figure 1. fNIRS probe and channel set in the present study. red indicates the emitters, blue indicates the receivers, and numbers 
indicate the channels.
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creative task performance, we used NLP methods (i.e., 
Jieba and Word2Vec) to optimize the measurement of 
classic metrics.

This present rating system was devised as follows: (1) 
Raw verbal data was collected from a voice recorder and 
segmented to obtain regular phrases, implementing 
a regularization and filtering of nonsense characters 
like digits and punctions; (2) Further segmentation of 
the phrases obtained in step 1 was performed through 
Jieba, and invalid responses (e.g., “I don’t know,” “that’s 
all I got”) were filtered out; (3) The first few words (the 
exact number of words were determined by the algo-
rithm) with the highest frequency were deemed as 
“latent keywords,” then primary classification of words 
was performed based on the latent keywords, which 
yielded several categories; (4) The words showing the 
highest frequency within its corresponding category was 
determined as the “topic word”; (5) Phrases and words 
were assigned to topics, and those that did not belong to 
any topic were labeled as low-frequency words; (6) 
Further classification of low-frequency words was 
achieved by applying the Word2Vec (Mikolov et al., 
2013) algorithm; (7) Fluency, flexibility, and originality 
scores were then calculated for each participant based on 
the classification. Fluency was derived by counting all 
the valid answers of each participant. Flexibility was 

calculated by summarizing the number of topics encom-
passed by the AUT responses. Originality was calculated 
based on the relative frequency of each answer to the 
present sample, where 2 points were assigned for 
answers with a total frequency of less than 5%, and 1 
point for a frequency of 5–10%. In Shen and Shao 
(2019)’s original work with this method, the Kendall 
coefficient between human rating and the results of the 
rating system ranges from .627 to .860. In the present 
study, the Pearson correlation between three indicators 
within every AUT item range from .851 to .990 (see 
Appendix Table 1). Given the high correlations between 
the three metrics, we conducted Bartlett’s test and 
Kaiser-Meyer-Olkin (KMO), which illustrated that the 
data were appropriate for factor analysis (KMO = .669, 
.745, and .697 for a knife, chopsticks, and newspapers 
respectively and p values of Bartlett’s test were 
all < .001). Therefore, Principal Component Analysis 
(PCA) was conducted for each item; each participant’s 
AUT performance was thus quantified by the average of 
these three PCA scores.

The OCT was administered as a control task (Beaty 
et al., 2018). During the OCT, participants were asked to 
verbalize as many characteristics as possible for 
a common item in 1.5 min. For example, participants 
received an auditory prompt (e.g., “What characteristics 

Figure 2. Static and dynamic RSFC network construction. After preprocessing, the static RSFC matrix was constructed by calculating 
Pearson correlations and applying Fisher Z transformations. The FCV matrix was constructed based on the SWC with window lengths of 
the 60s and step lengths of 1s. Note. CH: channel; RSFC: resting-state functional connectivity; SWC: sliding window correlation; FCV: 
functional connectivity variability.
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does a brick have?”) played through a voice recorder. 
After removing duplicate and irrational answers (e.g., “a 
key is soft and wet”), performance on each item was 
quantified by the number of answers reported during the 
task. In the present study, three items were used in the 
OCT: “keys,” “electric wires,” and “plastic bags.” 
Participants’ OCT performance was quantified by their 
average OCT scores.

Predictive modeling

A bivariate correlation was initially conducted to iden-
tify which edges (i.e., the correlation coefficient for 
channel pair) related to creative performance (after 
dimension reduction). Only those edges that signifi-
cantly correlated with the AUT performance (p < .05, 
uncorrected) were entered into the prediction model. 
Then, based on those edges, an elastic-net regression 
was conducted. Elastic-net regression is a widely used 
regression method that is adopted when predictors are 
strongly outnumbered by the observations, and the col-
linearity of predictors makes a simple ordinary least 
squares (OLS) regression inappropriate for model con-
struction (due to possible over-fitting problems). There 
are two parameters in the elastic-net regression, α, and λ. 
The former parameter is a positive value ranging from 0 
to 1, indicating the proportion of L1 and L2 penaliza-
tions (i.e., ridge penalization and LASSO penalization, 
for further discussion, see Zou & Hastie, 2005). When α 
is 0, the model becomes a ridge regression model; when 
it is 1, the model becomes a LASSO regression model. 
Then, λ is also a positive value with a self-paced range, 
indicating the severity of the penalty. When λ is 0, the 
model becomes an OLS regression model, and when the 
λ reaches the maximum, the weights of all predictors are 
set to 0. In general, L1-norm (i.e., LASSO penalization) 
was implemented to remove invalid predictors, and L2- 

norm (i.e., Ridge penalization) was implemented to sta-
bilize the model by keeping the squared sum of the 
coefficients as low as possible. Importantly, by introdu-
cing L1-norm and L2-norm, possible over-fitting pro-
blems are avoided, particularly in cases when the OLS 
regression model has many predictors.

For each α value between 0.001 and 1, in steps of 
0.001, we construct 100 predictive models with different 
λ values until the weights of all predictors are set to 0, 
yielding a total of 100,000 predictive models. A leave one 
out cross-validation (LOOCV) was then conducted on 
each model to identify the model which comprised the 
lowest mean square error (MSE). The model displaying 
the minimal MSE was selected as the optimal prediction 
model. The interpretation rate (R2) could then be 
obtained and the MSE of model fit was calculated with 
10,000 permutation tests. The p-value reflected the prob-
ability that the MSE obtained from randomized data is 
lower than the MSE in our prediction model (Duan, Van 
Dam, Ai, & Xu, 2020). Two models can be thus 
obtained: 1) a static network based on correlation coeffi-
cients, and 2) a dynamic network based on the standard 
deviations of the correlation coefficients (see Figure 3).

Results

Prediction of creativity based on the static network

We began by attempting to predict AUT performance 
based on static network connectivity between DMN and 
FPCN. When α was set at 0.049 and λ at 0.4018, the 
model fit showed the lowest MES (0.8290). As depicted 
in Figure 4, the predicted AUT performance explained 
37.69% of the variance observed in the actual AUT 
performance. A permutation test of the MSE showed 
that the elastic-net regression model can significantly 
predict actual AUT performance (p =.0027). The edges 
which contributed to the prediction model are depicted 
in Figure 5, and the weights of each edge in the predic-
tion model are displayed in Table 1. This static connec-
tivity thus yielded a significant prediction of AUT 
performance from DMN-FPCN connectivity, replicat-
ing and extending fMRI findings using fNIRS and auto-
mated creativity scoring.

To test model specificity, we fit the model to the OCT 
control task (i.e., number of object characteristics pro-
duced). The model explained 7.84% of the variance 
observed in the OCT performance. Critically, a Steiger 
Z-test showed that the OCT prediction accuracy was 
significantly smaller than the AUT prediction accuracy 
(t = 2.8918, p = .0027), indicating that the model predicts 
creative ability (AUT) more strongly than simple gen-
erative abilities (OCT).

Table 1. Regression weights of each edge in the prediction 
model based on static RSFC.

Seed Target

WeightChannel Region Network Channel Region Network

3 ANG.R DMN 13 SMG.L FPCN 0.1886
4 SMG.R FPCN 25 IFG.R FPCN 0.4477
13 SMG.L FPCN 24 MTG.L DMN 0.3522
24 MTG.L DMN 26 DLPFC.R FPCN 0.1720
24 MTG.L DMN 33 DLPFC.R FPCN 0.2263
31 IFG.R FPCN 40 SFG.R DMN 0.4132
31 IFG.R FPCN 41 SFG.L DMN 0.1798
8 FG.R DMN 43 IFG.L FPCN −0.3977
11 MTG.R DMN 43 IFG.L FPCN −0.6355

Note. L: left; R: right; RSFC: resting-state functional connectivity; DMN: 
Default Mode network; FPCN: Frontal-Parietal network; ANG: Angular 
gyrus; SMG: Supramarginal gyrus; MTG: Middle Temporal gyrus; IFG: 
Inferior Frontal gyrus; DLPFC: Dorsolateral Prefrontal gyrus; SFG: Superior 
Frontal gyrus; FG: Fusiform gyrus.
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Prediction of creativity based on the dynamic 
network

Next, we tested whether creative ability could be pre-
dicted based on dynamic connectivity between DMN 
and FPCN. Setting α at 1 and λ at 0.0480 resulted in 
the model fit with the lowest MES (0.8341). The edges 
which contributed to the prediction model are depicted 
in Figure 6 and the weights of the edges in the prediction 
model are shown in Table 2.

Like the static network prediction model, the 
dynamic network model significantly predicted actual 
AUT performance (p = .0003). Remarkably, the dynamic 
prediction was almost twice as strong as the static pre-
diction, explaining 66.89% of the variance in creativity 
scores (Figure 7). Compared to the static model, the 
dynamic model included more within-network predic-
tive edges, particularly between nodes within the FPCN. 
In addition, several FPCN-DMN edges were negatively 
weighted, in contrast to the static network, which 

Figure 3. General procedure of predictive modeling. For every determined α and λ, a LOOCV was performed to estimate the MSE of 
the elastic-net regression model; 100,000 (1,000*100) MSEs were eventually yielded. The model which showed the least MSE was 
treated as the optimal model. Moreover, a permutation test was performed based on the predicted creative performance and observed 
creative performance. Note. LOOCV: leave one out cross-validation; MSE: mean square error.

Figure 4. Results of the elastic-net regression based on static RSFC. Left: the relationship between predicted creative performance 
and actual creative performance; Right: the result of the permutation test, where the black line indicates the MSE in the elastic-net 
regression. Note. RSFC: resting-state functional connectivity; MSE: mean square error.
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consisted of mostly positively weighted FPCN-DMN 
edges. The results indicate that creative ability – assessed 
via automated and objective metrics – can be robustly 
predicted from dynamic functional connectivity within 
and between the DMN and FPCN.

Finally, we fit the dynamic network model to OCT 
performance. Critically, this model did not yield 
a significant relationship between the predicted AUT 
performance and OCT performance (r = .21, 
p = .0999), pointing to its specificity for predicting 
creative ability and not simple generative capacity.

Discussion

We investigated whether creative ability could be 
predicted based on fNIRS functional connectivity 
between DMN and FPCN. Building on previous 
fMRI research (Beaty et al., 2018), we extended pre-
vious findings by applying fNIRS recorded resting- 
state brain activity and constructing prediction mod-
els based on entirely objective behavioral data (i.e., 
automated creativity scores, as opposed to subjective 
human creativity ratings). We constructed two 

Figure 5. Static RSFCs contribute to the prediction of creativity. For edges, warm colors indicate positive weights and cool colors 
indicate negative weights. The closer the edge is to primary red or blue, the stronger the association with AUT creativity. Note. L: left; R: 
right; RSFC: resting-state functional connectivity; DMN: Default Mode network; FPCN: Frontal-Parietal network; SMG: Supramarginal 
gyrus; SFG: Superior Frontal gyrus; STG: Superior Temporal gyrus; IFG: Inferior Frontal gyrus; DLPFC: Dorsolateral Prefrontal gyrus; ANG: 
Angular gyrus; MTG: Middle Temporal gyrus; FG: Fusiform gyrus.

Figure 6. Results of the elastic-net regression based on dynamic RSFC. Left: the relationship between predicted creative performance 
and actual creative performance; Right: results from the permutation test, where the black line indicates the MSE in the elastic-net 
regression. Note. RSFC: resting-state functional connectivity; MSE: mean square error.
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separate models, based on either a static or 
a dynamic network. Both models successfully pre-
dicted actual AUT performance measures. The 
dynamic model, however, showed a substantially 
stronger prediction, nearly doubling the prediction 
of the static network model. Notably, a robust pre-
diction of creative ability was achieved with only 
three minutes of resting-state fNIRS data. Taken 
together, our results replicate and extend past fMRI 
efforts in deriving brain-based predictions of creativ-
ity, expanding the current literature by validating 

previously observed effects in a more naturalistic 
neuroimaging environment and through objectively- 
derived behavioral data.

Static network prediction of creative ability

In line with previous studies (Beaty et al., 2018; Shi et al., 
2018), we found that RSFC between the core hubs of the 
FPCN and DMN significantly and strongly predicted 
performance on divergent thinking tasks. In addition 
to identifying large-scale predictive networks, another 
goal of the present work was to identify specific regions 
within FPCN and DMN that contributed to creativity 
prediction. To this end, we used elastic-net regression to 
obtain the weights associated with each edge (connec-
tion) in the prediction models. This approach revealed 
the important roles of the right frontal gyrus (i.e., 
DLPFC and IFG) and the left MTG in predicting per-
formance on the AUT.

The bilateral IFG, part of the FPCN, is typically asso-
ciated with higher-order processes such as inhibition 
and cognitive control (Swick, Ashley, & Turken, 2008). 
In a recent meta-analysis of neuroimaging data, Chen, 
Beaty, and Qiu (2020) found consistently strong engage-
ment of the right IFG across different domains of crea-
tivity. The right IFG was indicated to play a specific role 
in idea generation, likely supporting idea manipulation 
and allowing task-relevant goals to be maintained. 
Crucially, Beaty et al. (2018) found that RSFC between 
the right IFG and the DMN can robustly predict perfor-
mance on creative tasks. Supporting this finding, we 
found that RSFC between the right IFG and several 

Table 2. Regression weights of each edge in the dynamic RSFC 
prediction model.

Seed Target

WeightChannel Region Network Channel Region Network

4 SMG.R FPCN 36 IGF.L FPCN 0.8826
4 SMG.R FPCN 38 IFG.R FPCN 0.8848
6 SMG.R FPCN 30 IFG.L FPCN 1.961
13 SMG.L FPCN 39 IFG.R FPCN 1.369
14 SMG.L FPCN 39 IFG.R FPCN 0.9248
19 STG.L DMN 31 IFG.R FPCN 0.2171
21 STG.L DMN 31 IFG.R FPCN 0.6406
25 IFG.R FPCN 30 IFG.L FPCN 0.1983
26 DLPFC.R FPCN 28 DLPFC.L FPCN 0.3603
26 DLPFC.R FPCN 29 DLPFC.L FPCN 0.0862
26 DLPFC.R FPCN 32 IFG.R FPCN 0.6621
27 DLPFC.R FPCN 35 DLPFC.R FPCN 0.7248
30 IFG.L FPCN 39 IFG.R FPCN 0.7004
37 IFG.L FPCN 38 IFG.R FPCN 0.3341
3 ANG.R DMN 17 ANG.L DMN −0.987
3 ANG.R DMN 30 IFG.R FPCN −1.933
3 ANG.R DMN 32 IFG.R FPCN −1.486
6 SMG.R FPCN 33 DLPFC.R FPCN −1.097
24 MTG.L DMN 42 DLPFC.L FPCN −1.135

L: Left; R: Right; RSFC: resting-state functional connectivity; DMN: Default Mode 
network; FPCN: Frontal-Parietal network; SMG: Supramarginal gyrus; STG: 
Superior Temporal gyrus; IFG: Inferior Frontal gyrus; DLPFC: Dorsolateral 
Prefrontal gyrus; ANG: Angular gyrus; MTG: Middle Temporal gyrus.

Figure 7. Dynamic RSFC contributions to the prediction of creativity. Upper: Edges that positively weighted in the prediction 
model. Lower: Edges which negatively weighted in the prediction model. Bolder lines indicate a greater absolute value of weights. 
Note. L: Left; R: Right; RSFC: resting-state functional connectivity; DMN: Default Mode network; FPCN: Frontal-Parietal network; SMG: 
Supramarginal gyrus; STG: Superior Temporal gyrus; IFG: Inferior Frontal gyrus; DLPFC: Dorsolateral Prefrontal gyrus; ANG: Angular 
gyrus; MTG: Middle Temporal gyrus.
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hubs of the DMN and FPCN – the bilateral SFG and 
right SMG, respectively – strongly contributed to the 
prediction of creative performance.

Interestingly, RSFC between left IFG and other DMN 
hubs was negatively weighted in the prediction model 
while right IFG showed an opposite pattern. In a recent 
study applying tDCS over the bilateral IFG, inhibition of 
the left IFG and excitation of the right IFG resulted in 
higher flexibility and originality scores on an AUT (Khalil 
et al., 2020). Moreover, applying causal modeling techni-
ques to fMRI data, the right IFG was found to exert 
unidirectional control over the MTG and IPL during 
divergent thinking (Vartanian et al., 2018). Consistent 
with these studies, the present study emphasized the 
engagement of the right IFG in AUT performance. On 
the other hand, previous fMRI studies have reported 
increased functional connectivity between left IFG and 
DMN regions associated with divergent thinking perfor-
mance (Beaty et al., 2014; Takeuchi et al., 2017). Thus, 
although the current findings are consistent with past 
fMRI studies implicating left IFG connectivity to DMN, 
the direction of connectivity (negative vs. positive) varied 
across imaging modalities (fNIRS vs. fMRI) and statistical 
methods (prediction vs. correlation).

In a similar vein, we also observed positive contribu-
tions of the right DLPFC, but not the left DLPFC, in the 
prediction model. As suggested by Vanderhasselt et al. 
(2009), the left DLPFC is largely specialized for the rapid 
and sequential up-regulation of the attentional set, while 
the right DLPFC is related more to overall attentional 
control. Considering the role of the left MTG in sup-
porting memory retrieval (for further discussion, see Xu 
et al., 2015), RSFC between the right DLPFC and left 
MTG may indicate a degree of executive control over 
memory retrieval critical for creative performance.

In contrast with previous reports that verbal creativ-
ity can be predicted from inter-hemispheric RSFC 
(Chen et al., 2019), our static RSFC prediction model is 
seen to leverage a largely right-lateralized connectivity 
pattern. One possible explanation for this difference may 
rest on our use of an NLP method to evaluate creativity, 
biasing our prediction model to focus on brain connec-
tivity relevant to the elements of creativity captured by 
our computational method. The prediction model may 
thus have a higher sensitivity to the neural structures 
that underpin semantic memory and processing, as 
these would be of higher predictive value for creative 
performance determined from distributional semantic 
models. Notably, although the bilateral IFG and 
DLPFC have been related to semantic processes during 
creative thinking (Becker, Sommer, & Kuhn, 2020; Sun 

et al., 2016), the right hemisphere has been shown to 
more selectively support the processing of distant 
semantic relationships (Schmidt, DeBuse, & Seger, 
2007). Altogether, the right-lateralization observed in 
our static RSFC prediction model may be partly attrib-
uted to the NLP-based evaluation system favoring 
recombinations of distant semantic concepts as being 
more creative.

Dynamic network prediction of creative ability

By adopting FCV measurements as the predictors in an 
elastic-net regression model, we found that temporal var-
iations in the RSFC of FPCN and DMN can robustly 
predict AUT performance. Moreover, the FCV-based pre-
diction model showed a stronger prediction than its static 
counterpart (R2: .67 vs .38). The correlation between pre-
dicted creative performance and OCT performance was 
non-significant for the dynamic model and moderately 
significant for the static model. In other words, the predic-
tion model based on dynamic networks showed greater 
model specification than that based on static networks.

Most of the positively weighted predictors were defined 
by edges within the FPCN. Moreover, the dynamic net-
work edges were primarily within the FPCN, whereas the 
static network edges showed more predictive edges between 
FPCN and DMN. This seems to suggest that fluctuating 
engagement of the FPCN – as assessed by FCV – may be 
a dynamic neural feature of creative ability. Notably, the 
FPCN has been widely reported to be associated with 
executive control abilities (Niendam et al., 2012). In 
a recent study, variations over time in localized cortical 
activity were investigated via calculations of brain entropy 
(BEN; Shi et al., 2020). BEN is a measure of the variability 
in the functional configurations of the activity within 
a neural system. It was found that levels of BEN for the 
IFG and DLPFC were positively correlated with divergent 
thinking ability, suggesting that variability in FPCN con-
nectivity patterns would influence creativity. Variability in 
FC within the FPCN may represent the dynamic recruit-
ment of different executive abilities (i.e., shifting, inhibi-
tion, and updating), each drawing upon a unique 
connectivity pattern. These dynamically engaged cognitive 
features may then underpin the cognitive flexibility 
required to switch attention between goal-directed and 
self-generated thought, which is considered a core cogni-
tive component of creative thinking (Beaty et al., 2016).

Interestingly, and in contrast to the static network, 
a majority of the negatively weighted predictors in the 
dynamic model involved edges between the FPCN and 
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DMN. Among them, the FCV between the right ANG 
and bilateral IFG accounted for the greatest weight. This 
may indicate that instability in the RSFC between the 
right ANG and bilateral IFG may disrupt divergent think-
ing performance. Increasing evidence indicates that the 
ANG is involved in long-term memory retrieval (for 
a review, see Ramanan, Piguet, & Irish, 2018). In the 
context of creativity, Fink et al. (2010) observed stronger 
activations of the right ANG when participants engaged 
in an OCT than when they engaged in an AUT, while the 
opposite was true for the left ANG. Pick and Lavidor 
(2019) extended these findings by demonstrating that 
divergent thinking could be enhanced with the deactiva-
tion of the right ANG. These studies indicate that the 
right ANG may selectively support information extrac-
tion and combination to support creative thought.

We crucially observed a more robust prediction of 
creativity when leveraging FCV than from static RSFC. 
This finding indicates that creativity can be better charac-
terized by the dynamic features of RSFC within the FPCN, 
than when averaging its activity across time. Firstly, this 
marks the importance of assessing the dynamic patterns of 
brain activity when attempting to uncover the functional 
neural underpinnings of creative cognition, as these may 
prove more informative than static brain network investi-
gations. Secondly, this allows us to make some tentative 
conclusions with regard to the cognitive processes that are 
marked by activity in these brain networks.

Creativity requires both spontaneous/generative and 
strategic/evaluative processes (Beaty et al., 2014; 
Ivancovsky et al., 2019; Nijstad et al., 2010), and the 
integration of these two processes can be revealed by the 
coupling of FPCN and DMN (Beaty et al., 2015; 
Kleinmintz, Ivancovsky, & Shamay-Tsoory, 2019). 
However, whether these two cognitive processes occur 
sequentially, in parallel, or are repeatedly alternated dur-
ing creative thinking is unclear. Our findings indicate that 
creativity is positively associated with the dynamic 
recruitment, during rest, of networks associated with 
executive and generative processes respectively. In turn, 
this would suggest that dynamic patterns in the engage-
ment of relevant cognitive processes may similarly predict 
other creative outcomes. Specifically, creativity seems to 
depend during rest on the ordered dynamic recruitment 
of executive processes, indexed by the FPCN, and an 
inconsistent involvement of long-term memory retrieval, 
indexed by the DMN. Summing up, these results indicate 
that switching between different thinking processes is 
crucial for creative thinking (Li et al., 2017), and more 
importantly, that the nature of creative thinking can be 
better represented by its dynamic feature. Further evi-
dence is nevertheless required to extend the present find-
ings to task-based functional brain activity.

Prediction of creativity from natural language 
processing

Previous attempts at predicting creative thinking abilities 
have operationalized creativity in terms of subjective 
human judgments (Beaty et al., 2018). However, human 
creativity ratings have notable limitations, such as when 
raters disagree on what is a more or less creative idea, 
which has psychometric implications for reliably measur-
ing creativity, as well as the replicability of neuroscience 
findings. In the present work, we show that automated 
creativity scoring based on distributional semantic prop-
erties can be predicted based on brain activity.

We computed fluency, flexibility, and originality for 
each participant’s performance on AUT based on semantic 
algorithms, allowing us to fit our model to an objective 
measure of creativity. Objective scores based on semantic 
distance have been consistently shown to correlate with 
other measures of creativity (Beaty & Johnson, 2021; 
Dumas & Dunbar, 2014; Dumas et al., 2020; Heinen & 
Johnson, 2018). By formulating the first predictive model 
of creativity from objective measures, we provide evidence 
that an entirely computational pipeline can be applied to 
creative thinking prediction. The refinement of this 
approach will permit a more optimal integration of crea-
tivity assessment with machine learning technologies in the 
future.

Using fNIRS to naturalistically study the 
neuroscience of creativity

Besides the theoretical contributions of the present 
study, an important practical implication is the 
novel application of fNIRS to construct creativity 
prediction models from RSFC. Replicating prior 
fMRI findings using fNIRS opens the door to pre-
dicting creativity from neural data collected in more 
naturalistic contexts, in contrast to the highly con-
strained MRI environment that may conceal more 
valid resting-state dynamics (e.g., due to restricted 
mobility). Prior work has found differences in rest-
ing brain activity due to postural differences. For 
example, Unwalla, Cadieux, and Shore (2021) 
reported performance differences in a perception 
task between a “lying down” group and a “sitting 
up” group. It is likely that most alterations to the 
experimental design, such as changes in the setting 
or the participants’ posture, will affect the neural, 
cognitive, and behavioral correlates of a creativity 
task. Given the constraints on the ecological validity 
that arise from using fMRI, it is important to con-
sider alternative neuroimaging techniques such as 
fNIRS.
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Our results indicate that adopting fNIRS to capture the 
RSFC between the DMN and FPCN, allows for the efficient 
prediction of divergent thinking performance. Crucially, 
the data was gathered via a procedure that better represents 
real-life resting-state conditions than fMRI procedures, 
whilst maintaining the rigor consistent with lab environ-
ments. Altogether, we believe that it is important for future 
efforts in creativity neuroscience research to strive for 
ecological validity, such as by incorporating neuroimaging 
technologies that allow for more mobility (e.g., fNIRS).

Limitations and future directions

In addition to the novel contributions of the present work, 
a few limitations should be noted. Due to the relatively 
small sample size, all the data collected in the present 
study was entered into the training set (Duan et al., 2020), 
potentially decreasing the generalizability of our results 
(e.g., over-fitting). However, given the elastic-net penaliza-
tion applied in the present study, the potential for over- 
fitting can be avoided (e.g., Liu, Zhang, & Wu, 2014; Xin, 
Hu, & Liu, 2017; Zhou, Tao, & Wu, 2011). Nevertheless, 
future studies are required to replicate our findings with 
a larger sample size to allow for the use of separate training 
and test sets. Moreover, we put a strict restriction on parti-
cipants’ age to avoid possible bias for different age groups 
have different verbal creative abilities (Leon, Altmann, 
Abrams, Gonzalez Rothi, & Heilman, 2019) and RSFC 
changes across ages (Fjell et al., 2015; Xiao et al., 2018), 
which unavoidably decreased the generalizability of our 
results. Meanwhile, given the imbalanced sex ratio (84% 
female), our prediction model was mainly built on females’ 
RSFC, which may also decrease the generalizability of our 
results. Therefore, future studies involving participants 
with a wider age distribution and balanced sex ratio are 
required to replicate our findings. Additionally, it should be 
noted that the study was carried out in a laboratory setting. 
While this allowed us to minimize confounding influences 
on the data collected, assumptions of strong ecological 
validity should be drawn with caution. Future efforts are 
therefore encouraged to extend these findings to increas-
ingly naturalistic conditions.

Additionally, to depict a clear neural model of creativ-
ity, behavioral implications (e.g., cognitive mechanisms) 
of the observed RSFC were limited to inference. 
A previous study (Marron et al., 2020) reported the med-
iating role of specific associative thinking abilities in 
driving the relationship between RSFC and creativity. 
Behavioral implications of the RSFC and FCV observed 
in the present study should be further investigated in 
future studies. Finally, we adopted relatively short scan 
durations, particularly when compared to those suggested 
by previous studies (Birn et al., 2013; Zuo et al., 2013). 

This was implemented to avoid possible biases caused by 
the fluctuations between wakeful and sleep states, which 
are known to occur with scan durations exceeding 3 min 
(Tagliazucchi & Laufs, 2014). Nevertheless, it is remark-
able that individual creative ability can be reliably pre-
dicted from such short scan durations – achieving even 
higher prediction levels than prior whole-brain fMRI 
studies (e.g., Beaty et al., 2018) – using convenient and 
relatively inexpensive fNIRS technology.

Conclusions

The present research offers the first evidence that 
fNIRS can be used to construct a predictive neural 
model of creativity, operationalized in terms of natural 
language processing, from pre-task RSFC. In doing so, 
it advances our current knowledge both from 
a theoretical and a practical standpoint. We extend 
fMRI findings from Beaty et al. (2018) based on 
human creativity ratings by demonstrating that crea-
tivity can be similarly predicted in terms of natural 
language processing and fNIRS signals. Using a static 
network prediction model, we observed a right- 
lateralization of the FPCN, potentially relating to spe-
cific executive abilities relevant to creative thinking. 
Using a dynamic network prediction model, we ana-
lyzed patterns of FCV, allowing us to expose the critical 
role of dynamic states of brain connectivity, which 
predicted creativity scores more strongly than the static 
model. We believe the next steps in this line of research 
lie in the proper elucidation of the mechanistic rela-
tionships that may contribute to RSFC prediction of 
creativity. Our work provides a framework for predict-
ing creativity based on neural activities recorded in 
a more naturalistic setting, motivating future work to 
study the impact of creativity interventions on brain 
dynamics.
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Appendix

Table A1. The correlation between AUT performance.
k_flu k_flex k_org c_flu c_flex c_org n_flu n_flex n_org

k_flu –
k_flex 0.982a** –
k_org 0.952*** 0.982*** –
c_flu 0.435*** 0.439*** 0.474*** –
c_flex 0.412*** 0.413*** 0.451*** 0.980*** –
c_org 0.421*** 0.423*** 0.458*** 0.970*** 0.990*** –
n_flu 0.483*** 0.491*** 0.458*** 0.446*** 0.451*** 0.465*** –
n_flex 0.427*** 0.433*** 0.404*** 0.401*** 0.405*** 0.426*** 0.931*** –
n_org 0.420*** 0.434*** 0.415*** 0.345** 0.345** 0.361** 0.851*** 0.932*** –

Note. k: knife; c: chopsticks; n: newspapers; flu: fluency; flex: flexibility; org: originality. 
ap < .05, ** p < .01, *** p < .001
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