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Neural Representations of Conceptual Fixation during Creative Imagination
Emily Fritha,b*, Courtney R. Gerverb*, Mathias Benedekc, Alexander P. Christensen d, and Roger E. Beaty b

aExponent, Inc.; bPennsylvania State University; cUniversity of Graz; dUniversity of Pennsylvania

ABSTRACT
A large body of research has revealed that viewing example image stimuli tends to constrain 
creative idea generation. However, the neurocognitive mechanisms underlying such visual fixation 
in creative cognition are unclear. In the present experiment, we explored whether example images 
impacted creative imagination and patterns of neural activity within brain regions associated with 
visual object recognition. Participants first viewed example images (ambiguous line drawings) 
accompanied by high-constraint and low-constraint labels. High-constraint labels resembled the 
line drawings, whereas low constraint labels did not. Next, participants imagined new labels for the 
same line drawings, with the initial labels removed. Consistent with our predictions, semantic 
distance analysis comparing cue labels to newly generated labels showed lower average semantic 
distance (i.e., less creative ideas) on high-constraint trials compared to low-constraint trials. Using 
representational similarity analysis, we also demonstrated that neural pattern similarity was antic-
orrelated (less similar) from object recognition to high-constraint imagination trials within the right 
inferior temporal gyrus, right middle temporal gyrus, and right superior occipital gyrus. Broadly, 
these findings suggest that salient visual examples may guide the formation of strong mental 
representations that constrain creative imagination. This research also offers a first step toward 
identifying neurocognitive signatures associated with the effortful process of producing new, 
creative ideas following exposure to fixating examples – particularly at the early level of object 
recognition/representation in the ventral visual stream.
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One of the hallmarks of creative cognition is the ability 
to form new associations between known concepts. 
Knowledge and experience are tools for creative expan-
sion and efficient problem-solving but may also confine 
exploration of diverse alternatives when “novel” ideas 
are merely reiterations of stored information (Alipour, 
Faizi, Moradi, & Akrami, 2018). Given that successfully 
combining information in original and useful ways can 
yield creative ideas and solutions (Mednick, 1962), it is 
not surprising that constraining this process via related 
examples has been shown to impede creativity (Beaty, 
Christensen, Benedek, Silvia, & Schacter, 2017; 
Chrysikou, Motyka, Nigro, Yang, & Thompson-Schill, 
2016; Chrysikou & Weisberg, 2005; George & Wiley, 
2019, 2020; Jansson & Smith, 1991; Lloyd-Cox, 
Christensen, Silvia, & Beaty, 2020; Smith, 2003; Smith, 
Ward, & Schumacher, 1993; Storm, 2011; Storm & 
Angello, 2010; Ward, 1994; Ward, Patterson, & Sifonis, 
2004).

Fixation occurs when a source of interference – such 
as examples or prior knowledge – interferes with one’s 
ability to successfully execute cognitive tasks (Smith, 
2003; Storm, 2011). Although much work has examined 

constraints on associative thought processes in verbal 
creative cognition tasks, less neuroscientific research has 
attempted to constrain creative associations through 
fixation in the visual domain (Lloyd-Cox et al., 2020). 
In the present research, we experimentally manipulated 
associative conceptual constraints to explore whether 
fixation on salient mental representations of visual sti-
muli impacted neural pattern similarity during diver-
gent creative imagination (i.e., imagining novel labels for 
ambiguous line drawings; Jankowska & Karwowski, 
2015). Exploring distinctions in how conceptual con-
straints are represented at the neural level may offer fine- 
grained insights into the role fixation plays in creative 
cognition.

The impact of fixation on creative cognition

In the context of creative thinking, knowledge may be 
leveraged to construct unique associations that fit task- 
relevant goals (Ward & Kolomyts, 2010). For example, 
musical composers must first learn distinct sounds and 
positions of notes on a given instrument prior to con-
structing novel melodies. Similarly, creative cognition 
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often involves extending prior knowledge in novel ways 
and requires controlled representation of task stimuli 
and goal-maintenance (e.g., a goal to generate unique, 
uncommon ideas; Benedek, Jauk, Sommer, Arendasy, & 
Neubauer, 2014). Mentally manipulating knowledge 
schemas to pursue novel goals is what Sternberg (1999) 
operationalized as the process of creative redirection. 
Thus, knowledge is important for generating new con-
ceptual combinations (Mednick, 1962; Ward & 
Kolomyts, 2010). However, relying too heavily on prior 
experiences may trap individuals in a semantic network 
of close, conventional associations that constrain crea-
tive cognition (Kenett, 2018; Kenett & Faust, 2019). 
Despite the intuitive benefits of knowledge and experi-
ence, mental fixation in creative cognition may occur 
when individuals are unable to inhibit salient informa-
tion to imagine novel response candidates (Chrysikou et 
al., 2016; Smith et al., 1993).

Researchers have explored the fixating impacts of sali-
ent examples on creative cognition in a variety of ways, 
using divergent (Chrysikou et al., 2016; Chrysikou & 
Weisberg, 2005; Sio, Kotovsky, & Cagan, 2015; Smith et 
al., 2003; Ward, 1994; Ward et al., 2004; Wiley, 1998), and 
convergent thinking assessments (Luft, Zioga, 
Thompson, Banissy, & Bhattacharya, 2018; Smith & 
Blankenship, 1991; Storm & Angello, 2010). For example, 
the verbal Remote Associates Test (RAT) of convergent 
thinking (Mednick, 1962), requires identifying a common 
associate that links a triad of words (e.g., print, berry, 
bird = blue). Several studies have shown that participants 
generate fewer correct solutions after studying example 
word associates (e.g., “print-cheetah,” “berry-straw,” 
“bird-robin”), compared to when examples are not pro-
vided (Luft et al., 2018; Smith & Blankenship, 1991; 
Storm, 2011; Storm & Angello, 2010). However, some 
evidence suggests that the fixating effects of examples in 
both convergent and divergent thinking may be dimin-
ished by forgetting. Storm and Angello (2010) found that 
participants who solved more RAT triads also forgot 
more example associates on a cued-recall task. 
Additionally, Storm and Patel (2014) observed that 
more creative alternative uses for common objects were 
generated among participants who forgot more pre-
viously studied example uses. To this end, failing to 
retrieve example information may help inhibit creative 
constraints (Lin & Lien, 2013; Storm, 2011; Storm & 
Angello, 2010; Storm, Angello, & Bjork, 2011; Storm & 
Patel, 2014).

Conversely, prior exposure to other people’s verbal 
ideas for object uses has been linked to higher subse-
quent divergent thinking originality than exposure to 
meaningless words, or reflection on one’s own ideas 

(Fink et al., 2010, 2012). Similarly, humor production – 
jokes generated on the spot – are rated as funnier when 
people are provided with good and bad examples rela-
tive to no examples (Shin, Cotter, Christensen, & Silvia, 
2018). However, most empirical work in the visual 
domain points to a detrimental impact of examples 
on creative divergent thinking, which was the focus of 
the present experiment. For example, Dahl and Moreau 
(2002) asked participants to design a novel device that 
would minimize spill risks during vehicular dining. 
Before starting their designs, participants were shown 
a variety of example sketches (e.g., cup holder, tray 
table, etc.). Relative to a no-example control group, 
participants exposed to example sketches appeared sus-
ceptible to the phenomenon known as “unconscious 
plagiarism.” That is, rather than serving as a spring-
board for originality, visual examples constrained 
designs, as participants often replicated features of the 
examples in their own responses. The constraining 
effects of visual examples have been shown to hinder 
original thinking in diverse experimental paradigms. 
These include imagining novel alien creatures to inha-
bit a distant planet, toys for a hypothetical company, or 
a measuring cup to accommodate consumers with 
visual impairments (George & Wiley, 2020; Jansson & 
Smith, 1991; Smith et al., 1993; Ward et al., 2004). 
Reproducing concrete attributes of example images 
has also been observed even when participants are 
explicitly instructed to avoid replicating exemplar com-
ponents or are shown flawed, incorrect examples 
(Chrysikou et al., 2016; Chrysikou & Weisberg, 2005; 
Smith et al., 1993), highlighting the dramatic effect of 
prior knowledge (examples) on idea generation.

One explanation for the robust influence of visual 
examples on creative thinking performance may be 
that individuals become fixated on functional object 
attributes (i.e., functional fixedness; Davidson, 2003; 
Duncker, 1945), and cannot flexibly access abstract lex-
ical, relational, and/or semantic information (Chrysikou 
et al., 2016). Functional fixedness has been observed 
following exposure to visual examples using convergent 
tasks that are commonly solved with sudden insight, 
such as the Two Strings Problem (Maier, 1931). For 
this specific problem, participants are shown two strings, 
hanging from the ceiling and positioned just far enough 
apart so that it is impossible to grasp both strings at the 
same time. A pile of heavy objects is also visible (includ-
ing a pair of pliers and a chair) in the room. The 
challenge is to generate one correct solution for tying 
the two strings together (Maier, 1931). People tend to 
become constrained by common knowledge of how the 
example objects are typically used, which may inhibit 
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using these objects in novel ways to solve the problem 
successfully (i.e., tying the pliers to one string to create a 
weighted pendulum that will swing into reach while the 
other string is grasped; Davidson, 2003).

Similarly, in divergent thinking protocols, picture- 
based examples (relative to verbal examples) have been 
shown to provoke top-down retrieval of known object 
properties that are biased toward the object’s canonical 
function, rather than its name or other semantic char-
acteristics (Chrysikou et al., 2016; Marsh, Landau, & 
Hicks, 1996; Smith et al., 1993). For example, before 
generating creative uses for a shoe, viewing an example 
image of a flip flop may reinforce specific function- 
biased responses (e.g., using the shoe as a fishing bobber, 
based on the knowledge that rubber materials float) that 
differ from function-biased responses prompted by 
viewing the image of a stiletto (e.g., using the heel to 
dig a hole, based on recalling the challenges of lawn- 
walking in heels). Overall, image-based stimuli may 
support mental representations of imagined action and 
manipulation affordances, but may also constrain mem-
ory retrieval strategies, resulting in functional fixedness 
(Boronat et al., 2005; Chainay & Humphreys, 2002; 
Chrysikou et al., 2016; Saffran et al., 2003). In summary, 
fixation on the canonical function of example stimuli, 
particularly in the visual domain, may be one mechan-
ism underlying creative constraints (Dahl & Moreau, 
2002; Ward, 1994).

Neurocognitive mechanisms underlying fixation 
in creative thinking

One way that individuals may overcome fixating infor-
mation is through inhibitory control. Inhibitory control 
is a mental construct positioned within a larger execu-
tive function framework for higher-order, goal-directed 
cognition (Cassotti, Agogué, Camarda, Houdé, & Borst, 
2016; Diamond, 2013; Zelazo, Craik, & Booth, 2004). 
Knowledge-driven constraints may reflect inhibitory 
control failures, as salient, habituated mental represen-
tations impede an effortful exploration of remote ideas 
(Benedek & Fink, 2019; Chrysikou, 2018; Wiley, 1998). 
Conversely, successfully inhibiting fixating information 
may liberate uncommon response candidates (Beaty, 
Benedek, Silvia, & Schacter, 2016; Beaty et al., 2017; 
Benedek et al., 2014). For instance, in a series of four 
experiments, Luft and colleagues (2018) provided evi-
dence indicating that right temporal alpha transcranial 
alternating current brain stimulation may be a mechan-
ism for successful inhibition of habituated mental sets 
during convergent and divergent thinking under high 
goal-directed attention demands (e.g., exposure to mis-
leading associates and/or generating uncommon uses 

for common objects; Luft et al., 2018). Some accounts 
have emphasized that disinhibition likely favors creative 
thinking performance under conditions of lower task- 
constraint (e.g., generating as many ideas as possible; 
Radel et al., 2015; Lin & Lien, 2013). This is because 
ostensibly irrelevant information is less likely to be 
flagged as extraneous to the task; thus, failure to inhibit 
unrelated stimuli may invite access to a repository of 
remote concepts (Radel et al., 2015; Zabelina, Saporta, & 
Beeman, 2016).

Most work on the role of inhibitory control in crea-
tive cognition highlights a dynamic interplay between 
spontaneous and controlled cognitive processes 
(Camarda et al., 2018), particularly when the task- 
demands for goal-directed cognition are higher (Radel 
et al., 2015). Neuroscientific research has provided some 
support for this interplay, contributing to a more clar-
ified understanding of fixation and inhibition in creative 
cognition paradigms. A meta-analytic examination of 45 
neuroscientific studies pointed to consistent activation 
in frontal brain regions, specifically the anterior cingu-
late cortex and inferior and middle frontal gyri, in effort-
ful visual and verbal creative thinking (Boccia, Piccardi, 
Palermo, Nori, & Palmiero, 2015). These regions are 
involved in error detection, response selection, inhibi-
tory control, and working memory (a strong executive 
correlate to inhibitory control; Boccia et al., 2015; 
Diamond et al., 2013), suggesting that the ability to 
engage controlled cognitive processes may be imperative 
for successful creative ideation. Though it is well- 
established that habituated mental sets are not condu-
cive to divergent thinking, such mental sets may be 
inhibited by controlled executive processes, which stra-
tegically guide memory retrieval in search of original 
ideas (Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014b; 
Benedek, Franz, Heene, & Neubauer, 2012).

While executive control network regions tend to be 
involved in controlled cognitive processes, such as atten-
tion regulation and selection of candidate responses that 
satisfy task demands (Beaty, Benedek, Kaufman, & 
Silvia, 2015; Beaty et al., 2016; Shen et al., 2020; 
Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 
2010), default network regions are often recruited dur-
ing spontaneous semantic processing, internally 
oriented mentation, self-generated thought, and visual 
creative thinking (De Pisapia, Bacci, Parrott, & Melcher, 
2016; Pidgeon et al., 2016; Vatansever, Menon, & 
Stamatakis, 2017; Zhu et al., 2017). Stronger large-scale 
brain network interactions between the default network 
and executive control network have been observed dur-
ing constrained idea generation (i.e., generating novel 
verb associates for studied nouns included in an earlier 
noun-verb associate memory task), compared to less 
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constrained ideation (i.e., generating novel verbs for 
new, unstudied nouns; Beaty et al., 2017). This network 
convergence may therefore be one mechanism under-
lying effortful rerouting of memory search and retrieval 
processes (Krieger-Redwood et al., 2016) away from 
spontaneously activated, known concepts, and toward 
controlled reconstruction of original ideas (Beaty et al., 
2015; Beaty, Thakral, Madore, Benedek, & Schacter, 
2018; Benedek & Fink, 2019; Schacter et al., 2012). 
Therefore, as constraints are incorporated into the pro-
blem-space, the requirement for executive control over 
spontaneous cognitive processes may also be greater to 
curb conceptual interference.

Recent creativity research has employed representa-
tional similarity analysis (RSA) methods to compare 
neural representation patterns within brain regions 
between different cognitive tasks (Beaty et al., 2020; 
Ren et al., 2020). RSA is a multivariate technique that 
models multi-voxel patterns of brain activity across cog-
nitive tasks – for example, comparing the similarity of 
voxel patterns during memory encoding to voxel pat-
terns during memory retrieval (Kriegeskorte, Mur, & 
Bandettini, 2008) – extending conventional fMRI analy-
sis that typically models univariate activation of voxel 
clusters. In one study on divergent thinking, greater 
neural pattern similarity was identified in the angular 
gyrus and posterior cingulate cortex regions of the 
default network between divergent thinking and a 
semantic (compared to an episodic) induction task, 
highlighting the involvement of semantic processing 
and associative combination in creative cognition 
(Beaty et al., 2020).

Other work using RSA examined the neural 
mechanisms for constructing novel and useful con-
cepts in creative cognition (Ren et al., 2020). Neural 
patterns were less similar in the middle temporal 
gyrus between baseline evaluation of familiar, useful 
object images (e.g., a picture of a pot lid to use while 
cooking) and evaluation of novel, useful objects (e.g., 
a picture of an adapted lid, standing upright on a 
table to prevent contamination), compared to evalua-
tion of familiar, useful objects and novel, useless 
objects (a picture of a pot lid riddled with holes). 
Middle temporal gyrus connections to the hippocam-
pus subserved goal-relevant novelty processing, and 
connections to executive control regions corre-
sponded with successful inhibition of prepotent 
associates (Ren et al., 2020). Overall, these findings 
are consistent with other work implicating the mid-
dle temporal gyrus in the cognitive process of mean-
ingful, task-relevant concept formation (Karalyn, 
Nestor, & Rogers, 2007; Tranel, Kemmerer, 
Adolphs, Damasio, & Damasio, 2003), and may also 

suggest that constructing novel associations is rein-
forced as ordinary concepts are detected and sup-
pressed (Ren et al., 2020). Taken together, different 
representational patterns of neural activations asso-
ciated with familiarity discrimination and novelty 
processing, as well as the unique roles of associative 
memory and executive function, underscore the 
importance of using prior knowledge in an adaptive 
way to offset constraints during creative thinking.

The present research

Although a substantial body of research has shown that 
visual examples prompt fixation in creative thinking 
tasks, the neurocognitive mechanisms underlying visual 
creative constraints are unclear. In the present experi-
ment, we examined visual creative constraints by inves-
tigating the impact of fixation on neural activations 
within visual association regions underlying object 
recognition. We focused on the object recognition sys-
tem because of its theoretical relevance to fixation: acti-
vating a conceptual representation via object recognition 
may constrain subsequent divergent imagination to the 
extent that the initial representation “sticks” in mind 
when generating ideas. During fMRI, participants first 
viewed images (ambiguous line drawings) and corre-
sponding labels that varied in degree of similarity (high 
constraint labels resembled the line drawing, while low 
constraint labels did not); then, the label disappeared, 
and participants were asked to imagine new, creative 
labels (cf. Lloyd-Cox et al., 2020).

At the behavioral level, we predicted that high- 
constraint images would render conceptual knowledge 
more salient and thus constrain creative imagination. At 
the neural level, we predicted greater neural pattern 
similarity in the high-constraint condition, relative to 
the low-constraint condition. Multivariate RSA 
(Kriegeskorte et al., 2008) was employed to examine 
whether neural patterns activated from initial visual 
object recognition to subsequent creative imagination 
were similar or dissimilar depending on constraints 
induced by the experimental manipulations (high versus 
low). Broadly, this project aimed to advance under-
standing of the neurocognitive mechanisms of fixation 
during creative cognition.

Methods

Participants

Thirty-four right-handed adult participants were 
recruited from The University of North Carolina at 
Greensboro (UNCG). The experimental procedure 
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was approved by the UNCG ethics committee and all 
participants provided written informed consent prior 
to data collection. Two participants were excluded 
from analyses due to excessive head motion while 
in the scanner (> 3 mm across all runs). Therefore, 
the final sample consisted of 32 individuals (67.7% 
women, Mage = 22.61, SD = 7.14) with normal, or 
corrected-to-normal, vision and no self-reported his-
tory of neurological disorder or use of psychotropic 
medications.

Experimental protocol

The fMRI experiment included two phases: visual object 
recognition (high-constraint or low-constraint; Phase 1) 
and shape identification or imagination (Phase 2). The 
phases were presented consecutively, with Phase 1 ser-
ving as a “priming” manipulation for Phase 2 (see 
Figure 1).

Phase 1: visual object recognition
Participants were given four seconds to rate how well a 
label related to an incomplete figure stimulus. Labels were 
rated on a scale of 1 = not at all related to 4 = highly 
related. For all trials, participants were instructed to “ima-
gine the figure as its label” when rating the relatedness of 
labeled figures. All 54 incomplete figures and labels 
selected for this task were used in previous research (see 
Lloyd-Cox et al., 2020), including figural stimuli from the 
Torrance Test (Torrance, 1965) and the Test of Creative 
Imagery Abilities (Jankowska & Karwowski, 2015). Label- 
figure pairs were prespecified as related (high-constraint; 
i.e., ≥20% of English-speaking MTurk pilot participants 
generated the same label for the figure), or unrelated 
(low-constraint; i.e., related labels from other figures 
were randomly paired with an alternative incomplete 
figure, with dissimilarity further confirmed by the 
research team). Each trial was separated by an intersti-
mulus interval (4–6s). For a complete description of 
stimuli selection, see Lloyd-Cox et al. (2020), but note 
that original data was collected for this experiment.

Figure 1. Schematic description of the study design.
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Participants used a Cedrus LSC-400B (San Pedro, 
California) four-button response box to rate incomplete 
figure labels. For all trials, black-and-white visual stimuli 
were presented via E-Prime software on a PC laptop 
computer. Text labels were always positioned under-
neath incomplete figures. Images were projected from 
the computer to a screen in clear view of participants 
lying supine in the MRI scanner and looking directly 
ahead at a mirror attached to the head coil.

Phase 2: imagination
In a subsequent phase, immediately following the label- 
rating phase, participants were first shown the task cue 
“Imagine” or “Shapes” for three seconds. “Imagine” 
experimental trials (36) were equally divided into two 
experimental conditions, in which participants were 
explicitly instructed to “be creative,” and were given ten 
seconds to generate creative labels for unlabeled incom-
plete figures from Phase 1 (Nusbaum, Silvia, & Beaty, 
2014; Said-Metwaly, Fernández-Castilla, Kyndt, & Van 
Den Noortgate, 2019). “Shapes” trials (18) were included 
as a shape-identification control condition, where parti-
cipants were given ten seconds to identify common 
shapes present in the unlabeled/incomplete figures from 
Phase 1. Though beyond the scope of the present experi-
ment, the shape-identification control condition was 
included to permit a separate activation analysis.

Additionally, the Imagine condition was further sub-
divided into “high-constraint” and “low-constraint” 
trials (equally balanced with the number of control 
trials). We predicted that the 18 high-constraint trials 
would induce fixation because incomplete figure stimuli 
had been paired with related labels in Phase 1. That is, 
we hypothesized that to successfully generate new, crea-
tive labels for figures in Phase 2, participants may need 
to override conceptual representations stimulated by 
high-constraint trials (Benedek, Christensen, Fink, & 
Beaty, 2019). In contrast, we predicted that the 18 low- 
constraint trials would be unlikely to induce conceptual 
fixation because incomplete figures had been paired with 
unrelated labels in Phase 1 (cf. Lloyd-Cox et al., 2020). 
For both high and low-constraint trials, participants 
were encouraged to “mentally manipulate the figure” 
(e.g., modify, expand on, elaborate, etc.) as they thought 
of creative labels. After the 10 second creative imagina-
tion experimental period, or shape-identification control 
period, participants were given five seconds to speak 
their responses into an MRI- compatible microphone 
(Optoacoustics; Mazor, Israel; www.optoacoustics.com).

Brain image acquisition and preprocessing

A 3-T Siemens Magnetom MRI system (Siemens 
Medical Systems, Erlangen, Germany) was equipped 
with a 16-channel head coil and used to acquire whole- 
brain images. A high-resolution T1 scan was acquired 
for anatomical normalization. Blood-oxygen-level 
dependent (BOLD)-sensitive T2*-weighted functional 
images were obtained using interleaved slice-ordering 
acquisition, with a single shot gradient-echo EPI pulse 
sequence, a 2000-ms repetition time, a 30-msec echo 
time, a 192 × 192 mm field of view, a 78° flip angle, 32 
axial slices, 3.5 × 3.5 × 4.0 mm, and a distance factor of 
0%. All functional images were corrected online for head 
motion, with the first two acquired volumes removed for 
T1 equilibration.

Anatomical data preprocessing
Results included in this manuscript come from prepro-
cessing performed using fMRIPrep 1.4.1rc1 (Esteban et 
al. (2018); Esteban, Blair, et al. (2018); RRID: 
SCR_016216), which is based on Nipype 1.2.0 
(Gorgolewski et al. (2011); Gorgolewski et al. (2018); 
RRID:SCR_002502). The T1-weighted (T1w) image 
was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al., 2010), distribu-
ted with ANTs 2.2.0 (Avants, Epstein, Grossman, & Gee, 
2008, RRID:SCR_004757), and used as T1w-reference 
throughout the workflow. The T1w-reference was then 
skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmen-
tation of cerebrospinal fluid (CSF), white-matter (WM) 
and gray-matter (GM) was performed on the brain- 
extracted T1w using fast (FSL 5.0.9, RRID: 
SCR_002823, Zhang, Brady, and Smith Zhang, Brady, 
& Smith, 2001). Brain surfaces were reconstructed using 
recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, 
Fischl, and Sereno Fischl, Sereno, & Dale, 1999), and 
the brain mask estimated previously was refined with a 
custom variation of the method to reconcile ANTs- 
derived and FreeSurfer-derived segmentations of the 
cortical gray-matter of Mindboggle (RRID: 
SCR_002438, Klein et al. Klein et al., 2017). Volume- 
based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through 
nonlinear registration with antsRegistration (ANTs 
2.2.0), using brain-extracted versions of both T1w refer-
ence and the T1w template. The following template was 
selected for spatial normalization: ICBM 152 Nonlinear 
Asymmetrical template version 2009 c [Fonov, Evans, 
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McKinstry, Almli, and Collins (2009), RRID: 
SCR_008796; TemplateFlow ID: MNI152NLin2009 
cAsym].

Functional data preprocessing
The following preprocessing was performed for the 
single BOLD run completed per subject. First, a 
reference volume and its skull-stripped version 
were generated using a custom methodology of 
fMRIPrep. The BOLD reference was then co- 
registered to the T1w reference using bbregister 
(FreeSurfer) which implements boundary-based 
registration (Greve & Fischl, 2009). Co-registration 
was configured with nine degrees of freedom to 
account for distortions remaining in the BOLD 
reference. Head-motion parameters with respect to 
the BOLD reference (transformation matrices, and 
six corresponding rotation and translation para-
meters) were estimated before any spatiotemporal 
filtering using mcflirt (FSL 5.0.9, Jenkinson, 
Bannister, Brady, & Smith, 2002). BOLD runs were 
slice-time corrected using 3dTshift from AFNI 
20160207 (Cox & Hyde, 1997). The BOLD time- 
series were resampled to surfaces on the following 
spaces: fsaverage5. The BOLD time-series (including 
slice-timing correction when applied) were 
resampled onto their original, native space by apply-
ing a single, composite transform to correct for 
head-motion and susceptibility distortions. These 
resampled BOLD time-series will be referred to as 
preprocessed BOLD in original space, or just pre-
processed BOLD. The BOLD time-series were 
resampled into standard space, generating a prepro-
cessed BOLD run in [‘MNI152NLin2009cAsym’] 
space. First, a reference volume and its skull- 
stripped version were generated using a custom 
methodology of fMRIPrep.

Several confounding time-series were calculated 
based on the preprocessed BOLD: framewise displa-
cement (FD), DVARS and three region-wise global 
signals. FD and DVARS are calculated for each 
functional run, both using their implementations 
in Nipype (following the definitions by Power et 
al., 2014). The three global signals are extracted 
within the CSF, the WM, and the whole-brain 
masks. The head-motion estimates calculated in the 
correction step were also placed within the corre-
sponding confounds file. The confound time series 
derived from head motion estimates and global sig-
nals were expanded with the inclusion of temporal 
derivatives and quadratic terms for each 
(Satterthwaite et al., 2013). Frames that exceeded a 

threshold of 0.5 mm FD or 1.5 standardized DVARS 
were annotated as motion outliers. All re-samplings 
can be performed with a single interpolation step by 
composing all the pertinent transformations (i.e., 
head-motion transform matrices, susceptibility dis-
tortion correction when available, and co- 
registrations to anatomical and output spaces). 
Gridded (volumetric) re-samplings were performed 
using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing 
effects of other kernels (Lanczos, 1964). Non- 
gridded (surface) re-samplings were performed 
using mri_vol2surf (FreeSurfer).

Semantic distance analyses

For all analyses statistical significance was set at p < 
.05. Behavioral analyses were conducted in R (ver-
sion 3.6.0; R Core Team, 2019) and RStudio 
(v.1.2.1335; www.rstudio.com; RStudioTeam, 2019). 
To evaluate the novelty of labels generated during 
the Imagine condition, average semantic distance 
values were computed using the open, automated 
scoring platform SemDis semdis.wlu.psu.edu; 
(Beaty & Johnson, 2021). Prior to SemDis analysis, 
participants’ generated labels were screened by a 
member of the research team who cleaned the data 
for spelling errors, inappropriate responses, and 
responses containing the incomplete figure label 
shown in Phase 1. For example, if a stimulus 
image was accompanied with the label “table” in 
Phase 1, and the participant responded “table” dur-
ing the Imagine condition in Phase 2, a valid 
semantic distance score could not be rendered 
using SemDis (i.e., zero distance), thus any repeated 
label words were manually removed from responses.

Average semantic distance scores were computed 
via the additive compositional model, which com-
bines word vectors within a response to form a single 
vector (Mitchell & Lapata, 2010). We specifically 
compared how distantly-associated each participant’s 
newly generated label was from the initial high- 
constraint (18 trials) and low-constraint labels (18 
trials) shown in Phase 1. Higher average semantic 
distance values represent more creative responses 
(i.e., more distantly associated with the Phase 1 
label; Beaty & Johnson, 2021). Thus, 36 average 
semantic distance scores were computed for each 
individual (18 high-constraint and 18 low-constraint 
values). Next, we conducted paired samples t-tests to 
compare whether average semantic distance values 
differed between the high- and low-constraint trials.
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Representational similarity analyses

To compare neural patterns during the object recogni-
tion and imagination conditions, we used RSA. Here, we 
evaluated whether cognitive states were similar between 
object recognition (label rating in Phase 1) and novel 
label generation in the Imagine condition (further clas-
sified into high-constraint and low-constraint trials). We 
predicted that object recognition regions would be 
recruited when participants judged the relatedness of 
labels to incomplete figures in Phase 1, and that these 
“object recognition” neural representations could be 
detected during the subsequent imagination period – 
and more so for the high constraint condition compared 
to the low constraint condition. We thus operationalized 
fixation/constraint at the neural level by examining 
whether high-constraint neural representations “stick 
in mind” during subsequent imagination.

Given these a priori predictions, we entered the search 
term “object recognition” (Yarkoni, Poldrack, Nichols, 
Van Essen, & Wager, 2011) into the Neurosynth database 
(http://neurosynth.org). This approach meta-analyzes rele-
vant neuroimaging studies to create an object recognition 
mask for download and subsequent analysis. In total, 17 
ROIs were derived from this Neurosynth mask using 
xjView (http://www.alivelearn.net/xjview/xjview97/) for 
anatomical localization and labeling. Three of the 17 
ROIs were removed due to high possibility of yielding a 
false positive (< 5 voxel extent threshold; Woo, Krishnan, 
& Wager, 2014) – therefore, 14 ROIs were retained for 
subsequent analyses (see Table 1 and Figure 2).

To estimate neural activity associated with individual 
trials, we ran separate general linear models defining one 
regressor for each trial at object recognition (Phase 1) 
and imagination (Phase 2) in SPM12. Six additional 

Table 1. Object recognition regions of interest.
MNI Coordinates

Region of Interest (ROI) H X Y Z k

Calcarine fissure and surrounding cortex R 14 −100 −4 11
Cerebellum L −52 −46 −42 14
Fusiform gyrus L −14 −4 −44 21
Fusiform gyrus L −40 −48 −22 162
Fusiform gyrus R 44 −46 −26 217
Inferior occipital gyrus L −38 −78 −8 369
Inferior temporal gyrus L −34 −6 −48 57
*Inferior temporal gyrus L −40 −26 −28 5
Inferior temporal gyrus R 52 −66 −14 675
Middle occipital gyrus L −24 −80 36 6
Middle temporal gyrus R 52 −24 −18 5
Superior occipital gyrus R 30 −80 34 17
Superior parietal gyrus L −24 −74 44 5
Postcentral gyrus L −40 −42 58 19
Postcentral gyrus R 30 −42 74 9
*Temporal pole: middle temporal gyrus L −20 18 −36 7
*Ventral anterior cingulate L −4 8 −30 10

Note. H = hemisphere: L = left; R = right; MNI coordinates: X, Y, and Z 
represent peak MNI; k indicates cluster extent; * ROIs not retained for 
analyses. Fi
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nuisance regressors were included in each run corre-
sponding to motion (x, y, z, pitch, roll, and yaw). Whole- 
brain parameter maps were generated for each trial at 
each phase for all participants. In any given parameter 
map, the value in each voxel represents the regression 
coefficient for that trial’s regressor in a multiple regres-
sion containing all other trials in the run and motion 
parameters. These beta parameter maps were next con-
catenated across runs and submitted to custom-coded 
scripts using the CoSMoMVPA toolbox (Oosterhof, 
Connolly, & Haxby, 2016) for pattern similarity analysis.

To examine whether constraint level (high vs. low) 
influenced the similarity of representations, we directly 
compared neural patterns of activation between Phase 1 
and Phase 2. Given our a priori hypothesis that constraint 
level would impact neural similarity, low- and high- 
constraint conditions were analyzed separately. 
Specifically, beta estimates extracted from the single trial 
models described above for each individual trial for a 
given condition during label rating were correlated with 
every trial of the same type during imagination (e.g., 
objects during label rating that were considered high- 
constraint were correlated with all high-constraint objects 
presented during the imagination phase). This resulted in 
neural similarity scores, as operationalized by Pearson’s r 
correlation values, for each trial. The correlations were 
then transformed to Fisher’s z, averaged within condition, 
and converted back to Pearson’s correlations for each 
participant. Group-level results were generated from aver-
aging within-condition similarity across all participants.

Results

Semantic distance

First, we examined the occurrence of extreme outliers 
for average semantic distance (Q1 – 3 * IQR or Q3 + 3 * 
IQR) in the Imagine condition, with no outliers 
detected. Paired-samples t-tests were then conducted 
to evaluate the difference between average ratings for 
how related the assigned labels were to the incomplete 
figures for high-constraint and low-constraint trials, 
average response times for those ratings, and average 
semantic distance of novel labels generated for the 
high-constraint and low-constraint experimental trials. 
The average relatedness ratings for the high-constraint 
condition (M = 3.58, SD = 0.73) were significantly 
higher, t(1107) = 46.41, p < .001, d = 2.78, than the 
low constraint condition (M = 1.42, SD = 0.81). 
Participants were significantly faster, t 
(1107) = −10.64, p < .001, d = 0.64, when rating the 
relatedness of the high-constraint label (M 
= 1863.40 ms, SD = 600.42 ms) compared to the low- 
constraint label (M = 2276.10 ms, SD = 690.00 ms). For 
semantic distance of generated labels, results revealed 
that, in the Imagine condition, average semantic dis-
tance was lower on high-constraint trials (M = 0.876, 
SD = 0.02) compared to low-constraint trials (M 
= 0.894, SD = 0.016). The difference in average seman-
tic distance between trial types was statistically signifi-
cant, t(31) = −3.877, p < .001, Cohen’s d = 0.68 (see 
Figure 3).
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Figure 3. Average semantic distance scores. Note. Figure 3. displays the average semantic distance performance in the high and low- 
constraint trials (error bars represent standard deviation); ** = p < .001.
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Neural pattern similarity

First, we examined the occurrence of extreme outliers 
for neural pattern similarity (Q1 – 3 * IQR or Q3 + 3 * 
IQR) across each ROI. Participants were excluded from 
subsequent analyses if they met outlier criteria. Thus, 
reduced degrees of freedom in several of the ROI models 
are indicative of outlier exclusion and/or missing data 
for neural similarity. Descriptive statistics for neural 
pattern similarity across the 14 retained ROIs, with out-
liers excluded, are displayed in Table 2.

We next conducted paired-samples t-tests to examine 
differences in neural pattern similarity between object 
recognition (label rating in Phase 1) and novel label 
generation in the Imagine condition, separated by high- 
constraint and low-constraint trials.

Contrary to our predictions, we found that neural 
patterns were more anticorrelated (less similar) from 
object recognition to high-constraint imagination trials, 
relative to low-constraint imagination trials in three 
regions. Neural patterns were less similar from object 
recognition to high-constraint imagination trials (X = 
−0.012, SD = 0.01), relative to low-constraint imagina-
tion trials (X = −0.005, SD = 0.01) within the right 
inferior temporal gyrus. The difference in neural pattern 
similarity between the two trial types was statistically 
significant, t(26) = −3.348, p = .002, 95% confidence 
interval (CI) [−0.011, −0.003], Cohen’s d =0.64. Neural 
patterns were also less similar from object recognition to 
high-constraint imagination trials (X = −0.025, SD = 
0.02), relative to low-constraint imagination trials (X = 
0.001, SD = 0.03) within the right middle temporal 
gyrus. The difference in neural pattern similarity 
between the two trial types was statistically significant, 
t(25) = −3.448, p = .002, 95% CI [−0.041, −0.01], Cohen’s 
d = 0.68. Lastly, neural patterns were less similar from 
object recognition to high-constraint imagination trials 

(X = −0.011, SD = 0.02) relative to low-constraint ima-
gination trials (X = −0.002, SD = 0.02) in the right 
superior occipital gyrus. The difference in neural pattern 
similarity between the two trial types was statistically 
significant, t(27) = −2.196, p = .04, 95% CI [−0.018, 
−0.001], Cohen’s d = 0.42 (see Figure 4). Differences in 
neural pattern similarity between the imagination trial 
types were not statistically significant for the remaining 
11 ROI models (all ps > .05).

Discussion

The present research examined whether the induction of 
visual conceptual constraints influenced creative imagi-
nation and patterns of neural activity within brain 
regions associated with object recognition. While much 
experimental work has shown that viewing example 
images tends to compromise creative thinking 
(Chrysikou et al., 2016; Chrysikou & Weisberg, 2005; 
Dahl & Moreau, 2002; Fink et al., 2010, 2012; Jansson & 
Smith, 1991; Smith et al., 1993; Ward, 1994; Ward et al., 
2004), the neurocognitive mechanisms underlying visual 
fixation in creative cognition are poorly understood. 
Behaviorally, participants’ newly generated incomplete 
figure labels were of lower average semantic distance 
(i.e., less creative) following exposure to high- 
constraint, related labels, relative to low-constraint, 
unrelated labels.

Manipulating constraint level also impacted neural 
patterns underlying conceptual representations. 
Specifically, using RSA to compare neural pattern simi-
larity from visual object recognition in Phase 1 to sub-
sequent creative label imagination in Phase 2, we found 
the relationship between phases to be negatively related 
(anticorrelated). Examining the specific impact of con-
straint condition on this relationship, we identified more 

Table 2. Descriptive statistics for neural similarity in the imagine condition.
Imagine Condition Trial Type

ROI H High Constraint Trials 
M(SD)

Low Constraint Trials 
M(SD)

Calcarine fissure R −0.001(0.03) −0.006(0.02)
Cerebellum L −0.007(0.04) −0.023(0.04)
Fusiform gyrus L −0.042(0.06) −0.022(0.03)
Fusiform gyrus L −0.012(0.01) −0.008(0.01)
Fusiform gyrus R −0.016(0.02) −0.008(0.01)
Inferior occipital gyrus L −0.008(0.02) −0.009(0.01)
Inferior temporal gyrus L −0.017(0.01) −0.015(0.02)
Inferior temporal gyrus R −0.012(0.01) −0.005(0.01)
Middle occipital gyrus L −0.011(0.04) 0.004(0.03)
Middle temporal gyrus R −0.025(0.02) 0.001(0.03)
Postcentral gyrus L −0.01(0.02) −0.003(0.02)
Postcentral gyrus R −0.009(0.03) −0.022(0.02)
Superior occipital gyrus R −0.011(0.02) −0.002(0.02)
Superior parietal gyrus L −0.016(0.03) −0.004(0.03)

Note. ROI = region of interest; H = hemisphere; R = right; L = left; M = mean; SD = standard deviation
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dissimilar neural patterns in the right inferior temporal 
gyrus, right middle temporal gyrus, and right superior 
occipital gyrus for high- compared to low-constraint 
trials. We will discuss and interpret each of these find-
ings in the context of the broader literature in the fol-
lowing sections.

Consistent with our predictions, and the large body of 
related literature that has elucidated the fixating effects 
of visual exemplars (Boronat et al., 2005; Chainay & 
Humphreys, 2002; Chrysikou et al., 2016; Dahl & 
Moreau, 2002; Saffran et al., 2003; Ward, 1994), we 
found that examples constrained creative imagination. 
Overall, after viewing related labels paired with incom-
plete line drawings, new labels that participants gener-
ated for the same line drawings were less creative. 
Conversely, viewing unrelated labels did not negatively 
impact subsequent creative thinking relative to related 
labels. Showing participants related labels may have 
guided the formation of strong mental representations 
that disambiguated incomplete figure stimuli, but at a 
cost to creativity. Viewing labels that closely resembled 
incomplete figures may have primed a more “rigid” 
conceptual context, thereby preventing individuals 
from flexibly separating primed visual associations as 
they were attempting to produce their own creative 
labels (Lloyd-Cox et al., 2020; Marsh et al., 1996).

This explanation is aligned with work exploring func-
tional fixedness. As previously described, visual exam-
ples may constrain creativity via promoting functional 
fixation on an object’s attributes (Chrysikou et al., 2016; 
Duncker, 1945; Marsh et al., 1996; Smith et al., 1993). 
Because individuals have a propensity to solve problems 
using heuristic information (Borst, Aïte, & Houdé, 2015; 
Cassotti et al., 2016;, Houde & Borst, 2014), the activa-
tion of automatized mental representations via high- 
constraint visual examples (e.g., a “mountain” label 
assigned to the example image depicted in Figure 1) 
may have amplified fixation on information provided 
by proscriptive labels in this study. It is also possible that 
the significant neural pattern anticorrelations we 
observed in visual object recognition regions reflected 
cognitive processes involved in effortful conceptual 
expansion. Though we did not submit specific predic-
tions regarding constraint-driven differences in neural 
pattern similarity from visual object recognition in 
Phase 1 to creative label imagination in Phase 2, our 
findings may be a preliminary step toward revealing 
neurocognitive signatures associated with effortfully 
changing strong mental representations of highly related 
stimuli in service of new, creative ideas – particularly at 
the early level of object recognition/representation in the 
ventral visual stream.

Figure 4. Differences in neural pattern similarity between high-constraint and low-Constraint trials. Note. **p < .001; *p < .05; = mean 
value; ROI = region of interest.
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Compared to low-constraint trials, neural patterns 
were less similar from object recognition to creative 
label imagination in the right inferior and middle tem-
poral gyri and superior occipital gyrus during high- 
constraint imagination trials. Inferior and middle tem-
poral gyri are largely involved in both recognizing and 
classifying meaningful visual stimuli (Arkin, Przysinda, 
Pfeifer, Zeng, & Loui, 2019; Tanaka, 2001) as part of the 
“what” pathway of the ventral visual stream, which facil-
itates identifying objects’ color, shape, and texture 
(Goodale & Milner, 1992; Milner & Goodale, 1993, 
2008). The superior occipital gyrus is part of the 
“where” pathway of the dorsal visual stream, which 
enables processing objects’ movement, position, and 
orientation (Galletti & Fattori, 2018). Together, the 
inferior and middle temporal gyri and superior occipital 
gyrus may have supported mental representation of 
visuospatial features (e.g., discrimination of object 
shape and direction; Rankin et al., 2007; Shi, Cao, 
Chen, Zhuang, & Qiu, 2017; Xu, 2009) during early 
object recognition in this experiment.

Notably, the inferior temporal gyrus is also encom-
passed within a larger divergent thinking network com-
posed of frontal, parieto-temporal, and temporal regions 
(Gonen-Yaacovi et al., 2013; Perchtold et al., 2018). The 
middle temporal gyrus may subserve word production 
(Indefrey & Levelt, 2004), understanding language, and 
facilitating lexical-semantic retrieval and selection 
(Acheson, Hamidi, Binder, & Postle, 2011; Whitney, 
Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 2011). This 
region also appears to play a prominent role in new 
concept construction, as well as meaning and novelty 
detection (Karalyn et al., 2007; Ren et al., 2020; Tranel et 
al., 2003). Related evidence suggests that right middle 
temporal gyrus activity may mediate the cognitive process 
of inhibiting distracting, obvious semantic associations 
during novel idea generation (Luft et al., 2018). Here, it 
is plausible that significant neural pattern anticorrelation 
outcomes may be associated with cognitive processes 
operating to change or restructure constraining mental 
representations (informed by visually recognizing and 
interpreting related label-figure pairs), to effectively 
develop task-appropriate, original ideas.

In the present study, we paired unrelated labels with 
incomplete figures in the low-constraint condition; there-
fore, changing early visual representations may have been 
a) less effortful, or b) unnecessary, if the conceptual link 
between the label and incomplete figure was not strongly 
formed. However, in the high-constraint condition, suc-
cessfully imagining creative labels may have required 
avoiding the path of least resistance by changing one’s 
mental representations of label-figure pairs to subvert sali-
ent conceptual knowledge. Although preliminary, it is 

possible that less dissimilar neural patterns may represent 
an effortful cognitive process of successfully adapting 
visual representations of stimuli to destabilize constraining 
information and permit the imagination of original 
responses. In contrast, greater dissimilarity may indicate 
stronger mental representations that are resistant to 
change.

Notably, we hypothesized that high-constraint neural 
patterns would be more similar (compared to low), 
reflecting the high-constraint object representation “stick-
ing” in mind during subsequent generation. Contrary to 
our hypothesis, low-constraint neural patterns were 
indeed more similar between object recognition and gen-
eration. In hindsight, the results are consistent with the 
idea that neural patterns require less reorganization in the 
low-constraint condition, i.e., given that the image and 
label were not obviously related – and a strong association 
was not likely formed between the two (corresponding to 
activation of object recognition regions) – one might 
expect the neural patterns for “object recognition” and 
idea generation to be more similar. In the high-constraint 
condition, in contrast, neural patterns required greater 
restructuring during generation to override the salient 
activation of existing object representations. In other 
words, there is “more to change” in the initial object 
representation when subsequently imagining alternative 
labels, so the neural patterns should be more different 
from each other. This interpretation remains speculative 
and post hoc, however.

Another possibility is that, although evidence in the 
visual domain indicates that viewing example images may 
constrain creative divergent thinking (Chrysikou et al., 
2016; Dahl & Moreau, 2002; George & Wiley, 2020; 
Jansson & Smith, 1991; Marsh et al., 1996; Smith et al., 
1993; Ward et al., 2004), exposure to example images may 
provide a template for generating novel ideas. In the 
context of this experiment, perhaps high-constraint 
images were viewed as a clear starting-point for adaptive 
restructuring, relative to fuzzier low-constraint images. 
Currently, no experimental work has explicitly addressed 
this possibility; however, the Repeated Closed Figures 
Test, a classic task included in the Torrance Test of 
Creative Thinking battery (Torrance, 1990), presents 
repeating shapes (e.g., circles, triangles, etc.), from which 
participants must use their imaginations to overcome 
fixed structures and draw something new. Repeating 
shapes may therefore activate common knowledge and 
experience that constrains individuals from iterating 
beyond obvious responses, or these stimuli may represent 
a foundation that supports expansion of perspectives and 
novel ideas. We encourage future research to further 
examine neural mechanisms of fixation during visual 
tasks that involve creative imagination.
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Limitations and future research directions

One limitation of this study is that we did not 
employ a baseline creative imagination task. Future 
research may benefit from the inclusion of a baseline, 
or control, creativity assessment prior to showing 
participants related or unrelated labels. This is 
because asking participants to imagine labels for 
incomplete images that have yet to be paired with 
any verbal identifier will offer an opportunity to 
measure changes in divergent thinking performance 
that are driven by conceptual interference. That is, a 
baseline comparison would help answer the direc-
tional question, “Do examples in the visual domain 
impair or enhance individuals’ creative imagination 
performance?” A baseline task would also facilitate a 
fine-grained examination of individual differences in 
behavioral and neurocognitive responses to fixating 
example stimuli. Subsequent work may also consider 
using semantic distance with other scoring methods, 
such as subjective rater evaluations of creative qual-
ity, to offer additional analytic precision (Silvia et al., 
2008). Another potential limitation is that, following 
the visual object recognition phase of the experiment, 
some participants in the low-constraint condition 
generated the common high-constraint labels. That 
is, the semantic distance from the low-constraint 
label to the response may have been higher, but not 
necessarily more creative, relative to the high- 
constraint label.

Once a constraining mental representation is stimu-
lated, does the threat of fixation remain constant, or 
does successful cognitive control take time? We assessed 
the impact of visual creative constraints in a neuroima-
ging environment, which is essential for discovering 
neural mechanisms underlying conceptual interference, 
but the abbreviated nature of the assessment protocol 
(i.e., each trial lasted <30 seconds, from initial object 
recognition to creative label generation) may not fully 
capture the time course of constraint saliency. 
Complimentary behavioral research should examine 
whether the constraining effects of image-based exam-
ples degrade or persist over time, and continued work is 
also needed to investigate individual differences (such as 
personality, intelligence, attention, etc.), which may reg-
ulate the lability of mental representations in the face of 
creative constraints.

Lastly, the present experiment took an innovative, yet 
exploratory approach to identifying patterns of neural 
activation that emerge under visual conceptual con-
straints. We evaluated creative cognition using visual 
stimuli; however, our paradigm also included a verbal 

component (i.e., related/unrelated labels). A purely 
visual measure may provide a clarified understanding 
of how and when visual constraints impact creative 
thinking behavior and neural outcomes. For example, 
two images could be paired, with one pair prespecified as 
highly related and the other unrelated. Consider the 
image depicted in Figure 1. Researchers may couple 
this figure with a related image containing similar angles 
or line orientations, or an unrelated image that is more 
curved, composed of disconnected lines. Researchers 
may also consider presenting a related, complete version 
of the stimulus image with no label (e.g., a full drawing 
of a mountain), or a complete version of a different, 
unrelated image. Next, participants would draw their 
own creative figure. Participants could become fixated, 
replicating features of both images, irrespective of con-
straint level (see Smith et al., 1993; Ward et al., 2004), 
but variability in the unrelated image pairs could also 
facilitate conceptual combination that serves to connect 
information in original ways (Gick & Holyoak, 1983).

Conclusion

Findings from the present experiment indicated that 
manipulating conceptual interference in the visual 
domain impacted creative label imagination. 
Consistent with a wealth of prior research, we 
demonstrated that visual examples (i.e., related 
label-incomplete figure pairs) constrained creative 
idea generation, suggesting that salient conceptual 
stimuli may evoke strong mental representations of 
visual associations that are resistant to change. 
However, the ability to change or remove the cog-
nitive imprint of fixating information may help 
individuals shift perspectives in order to think crea-
tively (Cassotti et al., 2016). It is possible that less 
dissimilar neural patterns identified from object 
recognition to creative label imagination may repre-
sent attempts to change constraining mental repre-
sentations in order to generate original responses. 
This preliminary evidence contributes to the body of 
work on fixation in creative cognition as this is the 
first experiment to identify differences in neural 
pattern similarity as one potential mechanism 
underlying the impact of conceptual constraints on 
creative thinking. From this foundation, continued 
empirical efforts are needed to further our under-
standing of the neurocognitive bases of visual fixa-
tion in creative thinking. Extending this line of 
inquiry will also contribute to the larger goal of 
identifying strategies to overcome constraints and 
enhance creative cognition.
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