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While a recent upsurge in the application of neuroimaging methods to creative cognition has yielded encouraging 

progress toward understanding the neural underpinnings of creativity, the neural basis of barriers to creativity 

are as yet unexplored. Here, we report the first investigation into the neural correlates of one such recently 

identified barrier to creativity: anxiety specific to creative thinking, or creativity anxiety (Daker et al., 2019). We 

employed a machine-learning technique for exploring relations between functional connectivity and behavior 

(connectome-based predictive modeling; CPM) to investigate the functional connections underlying creativity 

anxiety. Using whole-brain resting-state functional connectivity data, we identified a network of connections 

or “edges ” that predicted individual differences in creativity anxiety, largely comprising connections within and 

between regions of the executive and default networks and the limbic system. We then found that the edges related 

to creativity anxiety identified in one sample generalize to predict creativity anxiety in an independent sample. 

We additionally found evidence that the network of edges related to creativity anxiety were largely distinct from 

those found in previous work to be related to divergent creative ability (Beaty et al., 2018). In addition to being 

the first work on the neural correlates of creativity anxiety, this research also included the development of a new 

Chinese-language version of the Creativity Anxiety Scale, and demonstrated that key behavioral findings from 

the initial work on creativity anxiety are replicable across cultures and languages. 
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. Introduction 

The ability to think creatively is highly prized across a variety of

elds ( World Economic, 2016 ), and an individual’s ability to maximize

heir creative potential only promises to become a more critical determi-

ant of success as creativity emerges as the area of human cognition least

eplaceable by artificial intelligence ( Dartnall, 2013 ; Jennings, 2010 ).

esearch to identify potential barriers to creative achievement is thus

 priority. While the timeliness of creativity as a research topic has

otivated new and exciting brain-based inquiry into creative cognition

 Beaty et al., 2018 ; Green, 2018 ; Green et al., 2016 ; Jung et al., 2013 ;

einberger et al., 2017 ; Wu et al., 2015 ) the neural bases of factors that

ay impede creativity have thus far gone unexplored. 
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Recent research at the behavioral level has identified anxiety that is

pecific to creative thinking (i.e., creativity anxiety) as a likely barrier

o creative achievement. Daker and colleagues (2019) recently devel-

ped the Creativity Anxiety Scale (CAS) and, applying this measure,

ound that creativity anxiety generalized across a wide range of content

omains, from areas traditionally viewed as “creative ” like music and

isual art to areas often seen as less creative, like science and math.

t was also found that people reported feeling greater anxiety in hypo-

hetical situations that involved the need to be creative than in simi-

ar situations that did not require creativity. This work further showed

hat individuals who were higher in creativity anxiety exhibited lower

evels of real-world creative achievement (measured using the Creative

chievement Questionnaire; CAQ) ( Carson et al., 2005 ) even after con-
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rolling for general trait anxiety, suggesting that creativity anxiety may

e an important barrier to creative achievement. 

No research to our knowledge has yet been conducted to explore the

eural basis of creativity anxiety, but promising advances have been

ade in our understanding of the neural correlates of creative ability.

he technique of connectome-based predictive modeling (CPM) has re-

ently been applied to reveal data-driven associations between func-

ional connections in the brain and meaningful psychological traits and

linical outcomes, including creativity ( Beaty et al., 2018 ; Shen et al.,

017 ). As resting-state data is relatively straightforward to collect and

hare across acquisition sites and language and cultural barriers, a be-

avioral index based on whole-brain regions measured at rest is well-

uited for both research and clinical contexts. CPM seeks to identify

unctional connections throughout the brain for which individual dif-

erences in connectivity strength predict a given behavioral measure

nd uses the strength of those connections to predict behavior in novel

ndividuals. An appealing aspect of CPM is that, once a set of connec-

ions is identified as predictive of a behavioral variable in one sam-

le, functional connectivity within that same network can be assessed

ithin other independent samples to test whether that set of connec-

ions successfully generalizes to predict the same behavioral variable –

r other behavioral variables – in the independent samples. Using CPM,

eaty and colleagues (2018) recently identified a large scale network

ssociated with creative thinking ability, which they termed the “cre-

tive connectome. ” After using CPM to identify a set of edges that pre-

icted divergent thinking in the Alternative Uses of Objects task, these

esearchers found that the same set of edges – largely made up of con-

ections between nodes in the default, executive, and salience networks

generalized to predict creative ability in multiple other samples. 

As a data-driven technique, CPM is an especially useful tool for

ypothesis-free characterization of connectomic brain-behavior corre-

ations. Just as CPM was used to identify a “creative connectome, ” it

an be used to identify a “creativity anxiety connectome. ” A key initial

uestion that can be asked is whether the connections that make up the

creativity anxiety connectome ” are largely similar those that make up

he “creative connectome ” identified by Beaty et al. (2018) or whether

he two sets of connections are primarily distinct. Testing the degree

o which the “creativity anxiety connectome ” and the previously iden-

ified “creative connectome ” are overlapping can indirectly inform the

xtent to which individual differences in creativity anxiety should be

hought of as distinct from differences in creative ability. If the same set

f functional connections give rise to both creative ability and creativity

nxiety, this suggests that these two constructs may be inherently en-

wined, and may suggest that our measure of creativity anxiety is merely

 proxy for creative ability. If the set of functional connections underly-

ng creativity anxiety is largely distinct from those underlying creative

bility, however, this would provide neural evidence that they should

e considered separate constructs. 

Extant evidence indicates that the neural correlates of anxieties re-

ated to specific domains of cognition can differ from the neural cor-

elates of ability in those domains. Task-related neuroimaging work on

nxiety specific to math (i.e., math anxiety), for instance, has largely im-

licated areas associated with affective processing, including the amyg-

ala ( Young et al., 2012 ) and the insula ( Lyons and Beilock, 2012 ), and

motion regulation, including inferior frontal junction, bilateral infe-

ior parietal lobe, rather than areas traditionally associated with math-

matical or numerical processing, such as bilateral intraparietal sulcus

 Dehaene et al., 2003 ). While this prior work was focused on task-based

MRI rather than on resting state fMRI, these neuroimaging findings on

ath anxiety – another anxiety linked to a specific type of cognition –

uggest that the neural correlates of anxiety toward a specific type of

ognition may be largely distinct from the neural correlates of ability

or that type of cognition. Thus, previous work suggests the possibility

hat a CPM-identified network of functional connections related to cre-

tivity anxiety may be largely distinct from the functional connections

ound to be related to creative ability by Beaty et al., (2018) . 
In the current study, we aimed to apply connectome-based predictive

odeling to identify a data-driven “creativity anxiety connectome ” – a

hole-brain network that predicts individual differences in creativity-

pecific anxiety. We further aimed to test whether network edges asso-

iated with creativity anxiety in one sample could predict the creativity

nxiety of individuals in another sample. Finally, we sought to assess

hether the extent to which functional connections identified to be re-

ated to creativity anxiety would be distinct from the set of functional

onnections identified by Beaty and colleagues (2018) to be related to

ivergent creative ability. While CPM is a data-driven technique and is

herefore not well-suited for testing of specific ROI-based hypotheses, in-

pection of the neuroanatomy of the networks it identifies can be useful

or hypothesis generation for future studies. As such, we also inspected

he neuroanatomy of the connections that make up the “creativity anxi-

ty connectome ” to provide a framework for hypothesis testing in future

esearch. Moreover, while the primary theoretical goal of this work was

o conduct a first investigation into the neural basis of creativity anxi-

ty, the present work also afforded the opportunity to develop a Chinese

anguage version of the Creativity Anxiety Scale and to test the replica-

ility of key behavioral findings from recent work identifying the new

onstruct of creativity anxiety. 

. Methods 

.1. Participants 

Because CPM is particularly informative when the predictive value

f findings from a discovery dataset can be tested on a separate dataset,

wo samples of participants were recruited for the present study. Both

amples were recruited from Southwest University in Chongqing, China,

nd both completed the survey measures described below and under-

ent resting-state fMRI. All were right handed and healthy, with no

istory of mental illness. All participants gave written informed consent

o participate. All participants received payment for participation. The

tudy was approved by the Southwest University Brain Imaging Center

nstitutional Review Board. 

Dataset 1 was used as the discovery dataset and was comprised of

81 participants. Twenty-five participants were excluded from analysis

ecause they did not complete the Creativity Anxiety Scale (CAS; see

aterials immediately below), and an additional 19 were excluded due

o excessive head motion during resting-state fMRI ( > 2 mm translation

n any axis and > 2° angular rotation in any axis) resulting in a final

ample of 237 participants (59 males; 21.45 ± 1.69 years old; range: 21.4-

6 years). 

Dataset 2 was used as the external validation dataset and was com-

rised of 245 participants. Twenty-three participants were excluded

rom analysis due to excessive head motion during resting state fMRI. Of

he 245 participants, only 147 participants (44 males; 20.03 ± 1.72 years

ld; range: 18-27 years) completed the CAS. And of those 147 partici-

ants who completed the CAS, 101 participants (30 males; 19.9 ± 1.57

ears old; range: 18-24 years) additionally completed the Creative

chievement Questionnaire (CAQ) and the State-Trait Anxiety Inven-

ory (STAI; each described in Materials below). For Dataset 2 analyses

hat involved only the CAS, we used the full sample of 147, and for

ataset 2 analyses that involved the CAS in addition to the CAQ and the

TAI, we used the subsample of 101 participants. 

.2. Materials 

.2.1. Creativity Anxiety Scale (CAS) 

Creativity anxiety was measured in both samples using a Chinese

ranslation of the Creativity Anxiety Scale ( Daker et al., 2019 ). The CAS

s a self-report questionnaire that consists of two types of items: Cre-

tivity Anxiety (CA) items, which assess anxiety toward situations that

equire the involvement of creative thinking (ex. “Having to think in

n open-ended and creative way ”), and Non-Creativity Anxiety Control
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NAC) items, which assess anxiety toward the noncreative demands of

ituations presented in CA items (ex. “Having to think in a precise and

ethodical way ”. Each CA item is paired with a NAC item devised to

atch the context presented in the CA item, but remove the need to be

reative. The CAS contains 8 CA items and 8 NAC items (see Supplemen-

ary material S1 ), and participants are asked to rate how anxious each

ituation would make them, on a 5-point intensity scale (None at all = 0,

 little = 1, A fair amount = 2, Much = 3, Very much = 4). Consistent

ith the recommendations of Daker et al. (2019) , we treated NAC scores

s a control measure and regressed out the effects of NAC items on CA

tems to ensure that the remaining variance in CA was specific to anxiety

bout thinking creatively (rather than about the noncreative demands

f the presented situations). The resulting residualized CA scores (CA r )

ere used for subsequent analysis. 

.2.2. Trait Anxiety 

Trait anxiety was assessed in both samples using the trait subscale of

he State-Trait Anxiety Inventory (TAI, Spielberger et al., 1970 ). Partici-

ants respond to 20 items on a scale from 1 (Almost never) to 4 (Almost

lways) to indicate how anxious they generally feel (ex. “I worry too

uch over something that doesn’t really matter ”). Possible scores range

rom 20 to 80, where higher scores indicate greater levels of general

nxiety. Trait anxiety was included as a control measure to ensure that

ny brain-behavior correlations involving creativity anxiety were not

onfounded by trait anxiety. 

.2.3. Creative Achievement Questionnaire (CAQ) 

A measure of real-world creative achievement was obtained using

he Creative Achievement Questionnaire (CAQ, Carson et al., 2005 ),

hich is made up of 80 total questions, 8 each from the following do-

ains: Visual Arts, Music, Dance, Architecture, Creative Writing, Hu-

or, Invention, Science, Drama, and Culinary Arts. In each domain,

articipants are first asked if they have any “training or recognized tal-

nt ” in the domain, and if the answer is yes, they respond to specific

rompts that assess progressively higher levels of attainment. In the

omain of Music, for example, item 2 is “I play one or more musical

nstruments proficiently ” (binary Yes/No), and item 8 is “My composi-

ions have been critiqued in a national publication ” (enter number of

imes this applies). Note that while an intended used of the CAQ was to

llow for the comparison of creative achievements across the lifespan

mong exceptionally talented individuals ( Carson et al., 2005 ), several

tudies have used the CAQ among “normal ” college-aged populations to

easure engagement with and success in the creative domains included

n the CAQ. For instance, previous work has found that measures of cre-

tive cognition have predicted real-world creative achievement (as mea-

ured by the CAQ) among university students, suggesting that (perhaps

nsurprisingly) those who are more creative are more likely to have

reative achievements ( Prabhakaran et al., 2014 ). Past work has also

hown that creativity anxiety negatively predicts individual differences

n CAQ scores among adult populations (mean age 34.56; Daker et al.,

019 ). A total CAQ score was calculated by summing scores across each

omain. As in previous work ( Prabhakaran et al., 2014 ; Daker et al.,

019 ), these scores were log-transformed to more closely approximate

 normal distribution (hereafter referred to as “CAQ_log ”). 

.3. fMRI Data Acquisition and Analysis 

.3.1. Image acquisition 

All participants completed 8 minutes of resting-state fMRI scanning

onducted at the Southwest University Brain Imaging Center on a 3T

rio scanner (Siemens Medical Systems, Erlangen, Germany). During

canning, participants were required to close their eyes but remain

wake. 242 volumes were acquired using a gradient echo planar imag-

ng sequence: repetition time = 2000 ms; echo time = 30 ms; slices = 32;

hickness = 3 mm; resolution matrix = 64 × 64; flip angle = 90°; field of
iew = 192 × 192 mm 

2 ; slice gap = 1 mm; and voxel size = 3.4 × 3.4 × 4

m 

3 . 

.3.2. Image preprocessing 

The resting-state fMRI data were analyzed using the Data Pro-

essing Assistant for Resting-State fMRI (DPARSF, http: //resting-

mri.sourceforge.net/) ( Chao-Gan and Yu-Feng, 2010 ) on SPM8 (Well-

ome Department of Imaging Neuroscience, London, United Kingdom;

ww.fil.ion.ucl.ac.uk/spm ). The first 10 volumes were discarded to al-

ow the signal to reach equilibrium. The remaining 232 volumes were

reprocessed by slice-timing, motion-correcting and normalizing to the

tandard MNI template with a resample voxel size of 3 × 3 × 3 mm.

ext, spatial smoothing with 8 mm full-width at half maximum Gaus-

ian kernel, linear detrend, band-pass temporal filtering (0.01-0.1 Hz),

nd nuisance covariates regression (24 Friston parameters, white mat-

er, cerebrospinal fluid and global signal) were also applied to the 232

olumes. 

.3.3. Functional network construction 

Whole-brain functional connectivity was analyzed for each subject

sing GRETNA ( Wang et al., 2015 ). Consistent with prior studies in-

olving connectome-based predictive modeling (CPM), the 268-ROI at-

as ( Shen et al., 2013 ), was applied to calculate FC in the present study.

his atlas was transformed from MNI space to individual space, and

he intensity-based registration algorithm was used in BioImage Suite

or transformation calculation. Compared with atlases defined by auto-

atic anatomic labels, the current atlas comprises nodes with more co-

erent timecourses, which represents an improvement over anatomical

egmentation schemes because anatomical boundaries do not necessar-

ly match functional ones. This atlas covers the whole brain, including

ortical, subcortical and brainstem structures ( Shen et al., 2013 ). Time

ourses from each ROI were extracted to compute Pearson correlation

etween each pair of ROIs, generating a 268 × 268 correlation matrix

or each subject. Each element of the matrix represents the strength of

onnection between two individual nodes (sometimes referred to as an

edge ”). These correlation matrices were transformed to z-scores using

isher’s transformation for further analysis. 

.3.4. Connectome-based Predictive Modeling 

Connectome-based predictive modeling (CPM), a recently developed

ethod introduced by Shen et al. ( Finn et al., 2015 ; Rosenberg et al.,

016 ; Shen et al., 2017 ), was used to predict individuals’ CA r from

hole-brain resting-state functional connectivity using a leave-one-out

pproach within the discovery dataset of 237 participants (Dataset

). CPM contains three broad steps: feature selection, model building,

nd model validation (see Fig. 1 ). Below, we briefly explain each of

hese steps. For a more in-depth explanation of the CPM technique, see

hen et al., (2017) . 

The first step of the CPM process is feature selection, the goal of

hich is to identify edges for which individual differences in connec-

ion strength predict CA r . An optimal threshold is applied to the matrix

o retain only edges that are significantly positively and negatively cor-

elated with CA r scores ( see ‘Optimal threshold exploration’ below ),

esulting in the identification of positive and negative edges. Edges that

re found to positively predict CA r – that is, edges for which increased

onnectivity is associated with increased CA r – will make up the posi-

ive CA network, and edges that are found to negatively predict CA r will

ake up the negative CA network. In identifying the sets of edges that

ake up these networks, we used a leave-one-out approach in which a

otal of N (in this case, 237) different positive and negative networks

re identified, in each case generated by repeating the edge identifica-

ion process while leaving one participant out of the dataset. The final

et of positive and negative edges that make up the positive and nega-

ive CA networks are those edges that appear in every iteration of the

eave-one-out process. We then calculated each participant’s positive

nd negative network connectivity strength by summing the strength of

http://www.fil.ion.ucl.ac.uk/spm
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Figure 1. Flowchart for prediction of individual CA r scores using whole-brain functional connectivity. CA r , CA score after regressing out the effects of NAC items. 
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onnections within the positive network and the negative network sep-

rately. In addition to positive and negative network strengths, we also

omputed combined network strengths by summing positive and nega-

ive network strengths together. Summing the strength of connections

ithin a given network for each participant provides a quantitative sum-

ary of the overall strength of functional connectivity each participant

as in the relevant connections that have been identified to either posi-

ively or negatively predict the outcome measure of interest (in this case,

A r ). At this point in the process, a set of connections that positively

nd negatively relate to CA r have been identified, and each participant

as been assigned positive, negative, and combined network strengths.

hese summed network strengths are used in subsequent steps to gauge

ow effectively the identified networks predict individual differences in

A r . 

The next step in the CPM process is to build linear regressions that

odel the association between the strength of the positive and negative

etworks and CA r . This step also uses a leave-one-out approach. For each

teration of the leave-one-out process, three different linear regression

odels are built: one in which the summed positive network strengths

redict CA r , one in which the summed negative network strengths pre-

ict CA r , and one in which the combined network strengths predict CAr.

fter each iteration of these regression models are completed, the re-

ulting models are used to generate predicted CA r scores for the left-out

articipant. The left-out participant’s summed network strengths are fed

nto the regression models, and the regression models output predicted

A r scores. Note that for each participant, three different predicted CA r 

cores are generated by this process, one for each of the three regres-

ion models: a predicted CA r score generated by the model using only

he summed positive network strengths, a predicted CA r score gener-

ted by the model using only the summed negative network strengths,

nd a predicted CA r score generated by the model using the combined

ummed network strengths. In this step, no significance testing is done;

he sole goal is to generate predicted CA r values using the observed net-

ork strengths. 

The final step in the CPM process is to determine whether the pre-

icted CA r values generated by the previous step significantly predict

he actual observed CA r values. The predictive efficacy of the network

s reflected in the magnitude and statistical significance of the Pearson

orrelation between observed CA r scores and CA r scores predicted by

he CPM model. If observed and predicted CA r scores are significantly

ositively related, this suggests that the CPM was successful in its pre-

iction. Note that three different models assessments are made here, one

hat assess the efficacy of the prediction of the positive CA network, one

hat assesses the efficacy of the prediction of the negative CA network,

nd one that assesses the efficacy of the prediction of the combined net-

ork. We also performed control analyses to further examine whether

he model significantly predicts observed CA r scores even when control-

ing for covariates including head motion, age, gender, CAQ_log scores,

nd TAI scores (see section 2.3.6 ‘control analyses’ below). We next sim-

lated 1,000 permutations to test whether the obtained metrics were

ignificantly better than expected by chance. In each permutation, we

andomly shuffled behavioral scores across subjects and reran the above

eave-one-out-cross-validation (LOOCV) prediction procedure, which re-

ulted in a distribution of correlation coefficients (r) that would be likely

o observe by chance. The number of times the permuted value was

reater than the true value was then divided by 1,000, providing an es-

imated p-value for the actual r-value we observed between observed

nd predicted CA r scores. 

.3.5. Optimal threshold exploration 

Several studies using CPM have used a threshold of ( p < 0.01)

t the feature selection step, the same as used in the original pa-

er ( Jangraw et al., 2018 ; Rosenberg et al., 2016 ; Shen et al., 2017 ).

hen et al. (2017) suggested that the optimal threshold to use at the

eature selection step should be explored within an initial dataset un-

er the condition (which the present work satisfies) that a validation
ataset is available to test the generalizability of the CPM findings. Op-

imal threshold exploration involves testing different p -value cutoffs for

etermining whether an edge should be considered as part of a network

y varying this cutoff and identifying the one that leads to the high-

st predictive efficacy of the behavioral measure (in this case creativity

nxiety) by the network. We set six thresholds (0.05, 0.01, 0.005, 0.001,

.0005, and 0.0001) to determine the set of edges and reran the LOOCV

rocedure at each threshold on the discovery dataset. Here we used the

ombined network’s predictive ability ( r -value) as the evaluation index.

.3.6. Control analyses 

In order to ensure that the observed relations between resting state

unctional connectivity and creativity anxiety were as specific as possi-

le, we controlled for several variables at the model evaluation stage on

he discovery dataset (when assessing whether predicted CA r scores gen-

rated by CPM significantly correlated with observed CA r scores). Given

hat in-scanner motion has been found to be a predominant factor im-

acting functional connectivity ( Horien et al., 2018 ; Waller et al., 2017 ;

ower et al., 2014 ; Van Dijk et al., 2012 ), we controlled for a head mo-

ion parameter (mean framewise displacement [FD]) at the model eval-

ation step. We also controlled for gender and age in our predictions, as

hese factors have also been shown to relate to functional connectivity

 Feng et al., 2018 ; Hsu et al., 2018 ). 

While controlling for head motion, gender, and age are standard in

PM work, there are other possible confounds that are important to con-

rol for when predicting creativity anxiety (CA r ). Creativity anxiety is

 type of anxiety, so if no other anxiety measures are controlled for, it

s possible that relations between resting state functional connectivity

nd creativity anxiety could be simply be explained by individual differ-

nces in anxiety (at the trait level or at the state level) more generally.

e took multiple steps to address this. First, as noted above, in addi-

ion to items that measure creativity anxiety (CA items), the Creativity

nxiety Scale has built-in control items (Non-creativity Anxiety Control;

AC items) devised to measure and control for anxiety toward similar

ituations that do not involve creative demands. The CA scores were

esidualized with respect to NAC scores (see Section 2.2.1 ), resulting in

he CA r scores that were entered into the CPM analysis pipeline. By re-

ressing out NAC scores, these CA r scores are quite specific to anxiety

oward situations that require creative thinking. We took the additional

tep of controlling for general trait anxiety (TAI) as well, further en-

uring that relations between CA r and functional connections are not

xplainable by general anxiety. Being in an fMRI scanner can of course

e an anxiety-inducing situation for some, and there are likely to be

ndividual differences in state anxiety, or anxiety experienced in-the-

oment ( Spielberger et al., 1970 ), while in the scanner. However, by

ontrolling for these other anxiety measures, possible associations be-

ween creativity anxiety and state anxiety while in the scanner would

ikely be accounted for, as there is no reason to assume that anxiety spe-

ific to creative thinking would predict unique variance in state anxiety

hile in an fMRI scanner that would not be captured by either general

rait anxiety or by the built-in NAC items that capture anxiety toward

imilar situations to those presented in the creativity anxiety items but

mportantly remove the creative demands. By controlling for these mea-

ures, we can be confident that any observed relations between creativ-

ty anxiety and resting state functional connectivity are not driven by

ndividual differences in anxiety more generally. 

Finally, to ensure that relations between creativity anxiety and rest-

ng state functional connectivity were not explained by individual dif-

erences in creative achievement, we also controlled for CAQ_log at the

odel evaluation stage of CPM. The predictive networks used in the cur-

ent work were therefore constructed by calculating the partial Pearson

orrelation between the CA r scores predicted by the CPM framework and

he observed CA r scores after controlling for the effects of head motion,

ge, gender, TAI scores, and CAQ_log scores. 
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.3.7. External generalizability 

We next evaluated the external predictive efficacy of the set of CA r -

elated edges identified in the discovery sample by testing whether these

dges were significantly predictive of CA r in an independent external

alidation sample of 147 participants (Dataset 2). Assessing whether

esults found in one sample hold in another sample is an especially

owerful method to assess the generalizability of CPM-based findings

 Shen et al., 2017 ). To do this, we first calculated summed positive CA

nd negative CA network strengths for each participant in the exter-

al validation sample by summing the strengths of the relevant edges

dentified using the CPM process in the discovery sample. A measure

f combined network strength was also computed by summing the posi-

ive and negative network strengths together. We then fed those network

trengths into regression models to generate predicted CA r values. As in

he case of the discovery dataset, three different sets of predicted CA r 

alues were generated: one in which the positive CA network strengths

re used to predict CA r values, one in which the negative CA network

trengths are used to predict CA r values, and one in which the combined

A network strengths are used to predict CA r values. The parameters of

he regression models (i.e., the slopes and intercepts) used to generate

redicted CA r values in Dataset 2 were derived from the regression mod-

ls from the leave-one-out process of generating predicted CA r values for

ataset 1. In Dataset 1, a total of 237 iterations of each model type was

un to generate predicted CA r values for a different left-out subject in

hat sample. We took the average of those model parameters to build

he regression models that would predict CA r values for Dataset 2. 

To assess the efficacy of these predictions, just as in the discovery

ataset, we related the predicted CA r scores to actual observed CA r 

cores (generated by residualizing out the effects of NAC scores on CA

cores, consistent with Dataset 1). If the predicted CA r scores generated

sing only information from the discovery dataset significantly relate

o observed CA r scores in the external validation dataset, this provides

trong evidence for the generalizability of the findings. 

.3.8. Comparing the sets of functional connections related to creativity 

nxiety to those related to divergent creative ability 

Finally, we assessed the extent to which the set of functional connec-

ions found to relate to creativity anxiety in the present work overlapped

ith the set of functional connections found by Beaty et al. (2018) to

e related to divergent creative ability. To do this, we obtained the

et of functional connections related to divergent creative ability from

eaty et al. (2018) and assessed how many of the precise functional

onnections the sets of networks had in common. If the sets of networks

ave relatively few connections in common, this would suggest that the

wo sets of networks are largely distinct from one another. 

. RESULTS 

.1. Behavioral Results 

.1.1. Factor Analysis Results of the Chinese Translation of the Creativity 

nxiety Scale 

To ensure appropriate translation of the CAS into Chinese, we con-

ucted an exploratory factor analysis with the translated CAS data from

oth datasets to determine whether CA items and NAC items loaded

trongly on separate factors as predicted. Exploratory factor analysis

sing maximum likelihood extraction yielded two factors with eigen-

alues above 1, suggesting that two factors are appropriate to retain.

he rotated solution showed that all CA items loaded on one factor,

nd all NAC items loaded on the other factor, suggesting that this trans-

ated version of the CAS successfully separated CA and NAC scores as

eparate measures. After examining the rotated factor loadings, two CA

tems were found to have factor loadings that were substantially lower

han factor loadings from the original scale ( Daker et al., 2019 ), and

s such two CA items and their paired NAC items were dropped from

nalysis. For further factor analysis details, see Supplementary Materials
ables S1 and S2 . The resulting Chinese translation of the CAS con-

isted of 6 CA items and 6 paired NAC items. Scores for each item type

re summed, resulting in a possible range of CA scores from 0-24 and

 possible range of NAC scores from 0-24 where higher scores indicate

igher levels of anxiety. Reliability of both scores using Cronbach’s al-

ha was high (CA: 𝛼 = .91; NAC: 𝛼 = .86). Together, these results show

hat anxiety toward situations that involve the need to be creative and

nxiety toward similar situations that do not were measured separately,

s expected. 

.1.2. Replication of Key Creativity Anxiety Behavioral Findings 

Descriptive statistics for CAS scores and all other behavioral mea-

ures are reported in Table 1 . To test whether anxiety responses were

igher for situations that involved the need to be creative than for sim-

lar situations that did not involve creative demands (as was found in

aker et al., 2019 ), we ran paired-samples t tests for each sample. In

oth Datasets 1 and 2, CA scores were on average significantly greater

han NAC scores (Dataset 1: t (236) = 8.33, p < .001, Cohen’s d = .71;

ataset 2: t (100) = 7.09, p < .001, Cohen’s d = .90). These results show

hat the finding that adding creative demands to a hypothetical situa-

ion increases the extent to which participants anticipate experiencing

nxiety in that situation replicates in the present samples. 

Daker et al. (2019) also assessed whether there were gender differ-

nces in responding on the CAS. They found that CA scores were higher

han NAC scores among both men and women, but that this difference

as especially pronounced among women. To assess whether these gen-

er differences replicated in the present samples, we ran a 2 (Gender:

ale, female) x 2 (Item Type: CA, NAC) mixed-factorial ANOVA within

ach sample. In Dataset 1, we found a significant main effect of Gender

 F (1, 236) = 6.348, p = .012] and a significant main effect of Item Type

 F (1, 236) = 69.210, p < .001], but no significant Gender x Item Type

nteraction [ F (1, 236) = .374, p = .541]. In Dataset 2, we found a sig-

ificant main effect of Item Type [ F (1, 146) = 52.748, p < .001], but no

ignificant main effect of Gender [ F (1, 146) = 1.858, p = .175] or Gen-

er x Item Type interaction [ F (1, 146) = 2.54, p = .113]. Together, these

esults show that the gender differences in CAS responding observed in

he American samples from Daker et al., (2019) were not found in the

hinese samples collected in the present research. 

We next tested whether CA scores negatively predicted creative

chievement (CAQ_log) as Daker et al., (2019) found. In Dataset 1, CA

cores did not predict individual differences in CAQ_log scores (when

ontrolling for NAC scores and general trait anxiety scores, 𝛽 = -.009,

 (233) = -.139, p = .889). However, in Dataset 2, CA scores nega-

ively predicted individual differences in CAQ_log even controlling for

AC scores and general trait anxiety scores ( 𝛽 = -.240, t (93) = -2.32,

 = .022). 

While some effects from Daker et al., (2019) were either not found

r only inconsistently found in the present samples (gender differences

n the extent to which CA scores were greater than NAC scores were not

bserved, and CA predicted creative achievement in one sample but not

he other), the behavioral results show that the Chinese translation of the

reativity Anxiety Scale measures anxiety about situations that involve

he need to think creatively (CA items) as separate from anxiety toward

imilar situations that do not involve creative demands (NAC items).

oreover, in both samples, it was found that situations that involve

reative demands are on average more anxiety-inducing than similar

ituations that do not. Both of these findings closely replicate those from

he initial creativity anxiety work in Daker et al., (2019) , and taken

ogether, suggest that the Chinese translation of the Creativity Anxiety

cale appropriately measures the construct of interest. 

.2. CPM Results 

.2.1. Determining the optimal threshold for edge detection 

Following the recommendation of Shen et al. (2017) , in the discovery

ataset, we assessed which p -value threshold for selecting edges led to
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Table 1 

CA, creativity anxiety. NAC, non-creativity anxiety control; CAQ_log, log transferred CAQ scores. 

Measure N Mean SD Range CA NAC TAI 

Dataset 1 

CA 237 12.43 4.49 0-24 

NAC 237 9.29 4.35 0-20 0.13 (p = 0.03) a 

TAI 237 41.1 8.68 0-66 0.15 (p = 0.02) a 0.12 (p = 0.06) a 

CAQ_log 237 0.68 0.42 0-1.97 -0.03 (p = 0.67) a -0.10 (p = 0.11) a -0.05 (p = 0.41) a 

Dateset 2 

CA 147 11.76 4.42 0-23 

NAC 147 8.50 3.55 0-18 0.19 (p = 0.05) a 

TAI 101 40 9.81 23-65 0.21 (p = 0.03) a 0.33 (p < 0.001) a 

CAQ_log 171 0.86 0.36 0-1.76 -0.20 (p = 0.05) a 0.09 (p = 0.35) a -0.04 (p = 0.73) a 

a Correlation analysis. In dataset 1, correlation analysis was conducted in a sample of 237 participants; in 

dataset 2, correlation analysis was conducted in a sample of 101 participants. 

Figure 2. Optimal threshold for predictive model. r value = correlation between 

observed and predicted CA r scores in combined network. CA r , CA score after 

ruling out the effects of NAC items. 
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c  

d  
he greatest overall brain-behavioral predictive efficacy from six thresh-

lds: 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001. Among these six

hresholds for determining edge selection, the correlation between the

ombined network’s predicted CA r scores and observed CA r scores in-

reased until threshold = 0.005 and then declined (see Fig. 2 ). This

ndicates the additional connections may provide redundant or unreli-

ble information and do not benefit for the models’ predictive power.

onsequently, we applied the threshold = 0.005 as the feature selection

hreshold in the main analysis above. We note that a threshold of 0.005

as recently been used in other recent CPM studies ( Feng et al., 2018 ;

osenberg et al., 2016 ). 

.2.2. Predictive efficacy of the model 

In the CPM pipeline, the positive and negative network strengths

ere calculated by summing the edges in the positive or negative tail for

ach training subject, separately. A set of combined network strengths

as also calculated by summing the edges from both the positive and

egative networks. After LOOCV, there were 237 positive, negative and

ombined networks (where one set of networks was created after leav-

ng out each subject). We defined the positive CA network as the set

f edges that appeared in the positive network of every iteration of the

OOCV. There were 240 edges in the positive CA network. The negative

A network was defined by the set of edges that appeared in the nega-

ive network of every iteration of the LOOCV. There were 197 edges in

he negative CA network. The sum of the edges of these two networks

epresents less than 1.5 percent of the sum of whole-brain’s 35778 edges

efined by the atlas used in this work ( Shen et al., 2013 ). 
The correlation between the observed CA r scores and predicted CA r 

cores represents the predictive efficacy of each network. Results indi-

ated that the positive, negative, and combined CA networks all signifi-

antly predicted individual differences in CA r , as evidenced by positive

orrelations between the predicted CA r scores each model generated and

ctual observed CA r scores (positive CA network: r = 0.20, p = 0.002,

 perm 

= 0.03; negative CA network: r = 0.21, p = 0.001, p perm 

= 0.02;

ombined CA network: r = 0.21, p = 0.001, p perm 

= 0.01; see Fig. 3 ).

 perm 

values were based on permutation testing (1000 permutations;

ee Methods for additional detail). After controlling for head motion,

ge, gender, CAQ_log scores, and TAI scores, all three networks still

ignificantly predicted CA r scores (positive CA network: r partial = 0.18,

 = 0.005; negative CA network: r partial = 0.20, p = 0.0003; combined

A network: r partial = 0.19, p = 0.003). Notably, this shows that the

elations between the set of functional connections and CA r cannot be

xplained by creative achievement or general trait anxiety. 

.3. Network neuroanatomy in the prediction of CA 

We next investigated the neuroanatomy of the identified positive and

egative CA networks. Figure 4 A shows a circle plot visualization of the

dges that make up the positive and negative CA networks. This figure

s intended to convey the general neuro-cognitive composition of the

ositive and negative CA networks based on high-level descriptions of

he involved brain regions. Figure 4 B shows glass brain plots that display

hese same connections localized in 3D brain space. These figures show

hat connections that predicted individual differences in CA r were not

ighly localized to specific brain regions but were instead distributed

hroughout the brain. 

Tables 2A and 2B show the nodes that were most well-represented

n the positive and negative CA networks, respectively. Each table dis-

lays the ten nodes that were involved in the greatest number of con-

ections within each network. Locations of key nodes of the positive

A network included the “default mode network ” (DMN; e.g., left supe-

ior frontal gyrus (LSFG); BA 10; k = 12; right posterior cingulate gyrus

rPCG); BA 23; k = 7; see Table 2A ) and in subcortical regions (e.g.,

ight caudate; k = 9; see Table 2A ). Key nodes of the negative CA net-

ork were located in, among other areas, the Fronto-Parietal executive

ontrol network [FPN; e.g., right middle frontal gyrus (rMFG); BA 10;

 = 8; right superior temporal gyrus (rSTG); k = 5], the salience network

e.g., Supramarginal gyrus; BA 40; k = 9), and the DMN (e.g., left angu-

ar gyrus (l); BA 39; k = 5; left precuneus; BA 31; k = 5; see Table 2B and

ig. 4 b ). 

.4. External generalizability 

We next assessed whether the networks that predicted CA r in the dis-

overy dataset of 237 participants (Dataset 1) generalized to a separate

ataset of 147 participants (Dataset 2). Models were run on the external
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Figure 3. The predictive ability of model. (a) Correlation between observed and predicted CA r scores in positive, negative, and combined CA networks. Observed 

and predicted CA r scores are standardized to z-scores. (b) The distribution of correlation by a permutation test of 1000 times. CA r , CA score after regressing out the 

effects of NAC items. CA, creativity anxiety. ∗∗ p < 0.01. 

Figure 4. Functional connections predicting individual CA. (a) The functional connections in positive and negative CA networks, plotted as the number of connections 

within each lobe. (b)The brain network patterns in positive and negative CA networks. CA, creativity anxiety. R = right hemisphere; L = left hemisphere. PFC, 

prefrontal cortex; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem. 
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Table 2A 

Positive CA network neuroanatomy (key nodes). BA, Brodmann area; K , degree; L, left hemisphere; R, right 

hemisphere; n/a, not available. MNI = Montreal Neurological Institute. CA, creativity anxiety. Note that 

these key nodes were defined as those highest in degree - the number of connections (edges) the node was 

involved in. 

No. K Node name Network L/R Lobe BA MNI coordinates 

1 14 Putamen Subcortical R Subcortical n/a 14, 8.3, -9.5 

2 12 Superior frontal gyrus Default Mode L Prefrontal 10 -6, 48.1, 11.7 

3 11 Caudate Subcortical R Subcortical n/a 12.6, 20.2, -0.7 

4 10 Calcarine fissure Visual L Occipital n/a -22.1, -66.7, 7.4 

5 9 Caudate Subcortical R Subcortical n/a 13.7, -4.2, 20.9 

6 8 Superior frontal gyrus Default Mode R Prefrontal 8 23.9, 30.7, 36.4 

7 8 Calcarine fissure Visual R Limbic 23 28.4, -53.8, 7.1 

8 7 Posterior cingulate gyrus Default Mode L Limbic 23 -5, -36, 32 

9 7 Posterior cingulate gyrus Default Mode R Limbic 23 5.1, -38.9, 27 

10 7 Superior frontal gyrus Default Mode L Prefrontal 9 -27.3, 34.1, 36.4 

Table 2B 

Negative CA network neuroanatomy (key nodes). BA, Brodmann area; K , degree; L, left hemisphere; R, right 

hemisphere; n/a, not available. MNI = Montreal Neurological Institute. CA, creativity anxiety. Note that 

these key nodes were defined as those highest in degree - the number of connections (edges) the node was 

involved in. 

No. K Node name Network L/R Lobe BA MNI coordinates 

1 12 Calcarine fissure Visual R Limbic 23 28.4, -53.8, 7.1 

2 9 Supramarginal gyrus Salience R Parietal 40 54.2, -45.2, 36.9 

3 8 Middle frontal gyrus Frontal-Parietal R Prefrontal 10 30.5, 54.9, -3.5 

4 8 Calcarine fissure Visual L Occipital n/a -22.1, -66.7, 7.4 

5 5 Superior temporal gyrus Frontal-Parietal R Temporal n/a 60.8, -43.3, -17.6 

6 5 Angular gyrus Default Mode L Parietal 39 -42, -65.6, 41.7 

7 5 Fusiform gyrus Visual L Temporal n/a -30, -5.8, -40.9 

8 5 Gyrus rectus Default Mode R Prefrontal 11 9.6, 17.8, -19.5 

9 5 Precuneus Default Mode L Limbic 31 -6.5, -53.9, 37.4 

10 4 Inferior temporal gyrus Default Mode L Temporal 20 -49.3, -4.7, -37.4 

Figure 5. Scatterplots for external validation. (a) Correlation between observed and predicted CA r scores in positive CA network. (b) Correlation between observed 

and predicted CA r scores in negative CA network. (c) Correlation between observed and predicted CA r scores in combined CA network. Observed and predicted CA r 

scores are standardized to z-scores. CA, creativity anxiety. ∗ p < 0.05, ∗∗ p < 0.01. 
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eneralizability dataset to assess whether predicted CAr scores gener-

ted by models using the set of edges identified in the discovery dataset

ignificantly related to observed CA scores of those in the generaliz-

bility dataset. Results revealed a significant prediction of CA r for the

egative network [r (147) = 0.22, p = 0.006, see Fig. 5 a ] and combined

etwork [r (147) = 0.22, p = 0.006, see Fig. 5 b ], but not the positive

etwork [r (147) = -0.20, p = 0.01]. Note that while p < 0.05 for the

ositive network, the direction of the result suggests that the predicted

A r scores are negatively related to observed CA r scores in the external

eneralizability dataset, which is not meaningful. These results suggest

l  
hat the set of edges identified in the negative network are especially

obust in predicting individual differences in creativity anxiety. 

.5. Degree of overlap between the ‘creativity anxiety connectome’ and the 

creative connectome’ 

Finally, we set out to assess the extent to which the set of functional

onnections related to creativity anxiety identified in the present re-

earch overlapped with the set of functional connections related to di-

ergent creative ability identified in previous work by Beaty and col-

eagues (2018) . Both the ‘creativity anxiety connectome’ and the ‘cre-
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Figure 6. The common edges between the ‘creativity anxiety connectome’ and the ‘creative connectome’. (a) The red edges correspond to the common edges between 

the positive CA network and the positive creative ability network; the yellow edges correspond to the common edges between the negative CA network and the 

negative creative ability network. (b) The red edges correspond to the common edges between the positive CA network and the negative creative ability network; 

the yellow edges correspond to the common edges between the negative CA network and the positive creative ability network. 
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tive ability’ connectome are comprised of two networks each: a pos-

tive and negative network. It should be noted that only the negative

reativity anxiety network generalized to predict CAr scores in an ex-

ernal sample in the present work, and only the positive creative ability

etwork generalized to predict creative ability in Beaty et al. (2018) . 

To compare these networks, we obtained the set of func-

ional connections related to divergent creative ability identified by

eaty et al. (2018) . While purely descriptive, the results show a very

mall degree of overlap between the networks. For full details on the ex-

ct functional connections that the various networks have in common,

ee Supplementary Material Table S2. Out of a total of 240 connections

n the positive CA network, only 3 (or 1.25%) are shared with the pos-

tive creative ability network (see Fig. 6 a), and only 4 (or 1.67%) are

hared with the negative creative ability network ( Fig. 6 b). Likewise,

ut of a total of 197 connections in the negative CA network, only 1 (or

.51%) is shared with the positive creative ability network ( Fig. 6 b), and

nly 4 (or 1.67%) are shared with the negative creative ability network

 Fig. 6 a). This demonstrates that the set of functional connections that

redict creativity anxiety are largely distinct from the set of functional

onnections that predict divergent creative ability. 

. Discussion 

While a considerable amount of progress has been made in identi-

ying neural bases of creativity, no research to date has examined the

eural basis of creativity anxiety, a recently identified potential barrier

o creative achievement. In the present study, a connectome-based pre-

ictive modeling approach identified a “creativity anxiety connectome ”

a set of functional connections throughout the brain that predict indi-

idual differences in creativity-specific anxiety. Importantly, the asso-

iations between creativity anxiety and the sum of edge strengths that

ade up the “creativity anxiety connectome ” were not explainable by

ndividual differences in trait anxiety, creative achievement, and other

elevant variables, demonstrating the specificity of the links between

reativity anxiety and the summed network scores of the creativity anx-

ety networks. CPM further indicated that the set of connections in the

egative network related to creativity anxiety identified in one sam-

le generalized to predict creativity anxiety in an independent sample,

emonstrating the replicability of this effect. Finally, we found that the

dentified set of functional connections related to creativity anxiety was

argely distinct from those identified to be related to divergent creative

bility ( Beaty et al., 2018 ), further demonstrating the specificity of the

reativity anxiety connectome. 
The finding that the “creativity anxiety connectome ” was largely

istinct from the “creative connectome ” identified by Beaty et al.,

2018) suggests that the neural basis of creativity anxiety differs from

hat of creative ability. This finding provides indirect evidence that cre-

tivity anxiety should be considered distinct from creative ability, and

hat self-reported anxiety toward creativity, as measured using the Cre-

tivity Anxiety Scale, is not merely a proxy for creative ability. More

roadly, this finding was consistent with the idea that anxiety toward a

iven domain and ability in that domain can have largely distinct neural

ases as also indicated by previous task-based fMRI work in the domain

f math ( Young et al., 2012 ; Lyons & Beilock, 2012 ). 

It should be noted that, while a strength of CPM lies in its ability to

ondense complex sets of functional connections into a manageable set

f values, CPM results are not intended to support strong claims about

pecific functional connections ( Shen et al., 2017 ) – in other words, CPM

s more concerned with using neural data to make predictions than with

ypothesis testing. As such, any interpretation of the neuroanatomy of

he networks CPM identifies rests on reverse inference and should be

onsidered speculative pending further research. Examining the neu-

oanatomy of the networks identified by CPM can provide opportuni-

ies to develop hypotheses for future research on creativity anxiety, so

his speculation can be useful. It is important to note, however, that

he present methods did not afford direct comparisons between highly

ocalized areas that made up the creativity anxiety network and those

hat have been implicated in other cognitive constructs, so the spatial

esolution of the comparisons we can make to previous fMRI work is

imited. 

The negative CA network identified in the present study, which gen-

ralized across samples and also predicted individual differences in cre-

tive achievement, was comprised of connections within and between

reas throughout the brain, including the following networks: execu-

ive, default mode, salience, visual, and limbic networks. In the nega-

ive CA network, the stronger connections predict lower CAr. That con-

ections between regions within executive and default mode networks

ere part of the CPM-identified network that predicted higher levels

f creativity anxiety is broadly consistent with work by Beaty and col-

eagues (2018) showing that greater connectivity between areas in these

etworks predicted greater levels of divergent creative ability. It is im-

ortant to note, however, that the exact edges identified in the creativity

nxiety connectome are largely distinct from the set of edges associated

ith creative ability. Interrogation of the negative CA network addi-

ionally revealed that connections within and between prefrontal con-

rol areas and limbic and subcortical areas were also part of the set of
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onnections that, when summed, predicted individual differences in cre-

tivity anxiety. These nodes were centered in brain regions that are of-

en implicated in affective processing ( Hariri et al., 2000 ; Herman et al.,

005 ; Ochsner and Gross, 2005 ; Wager et al., 2008 ). Speculatively, these

ighter connections of prefrontal areas that have been shown to be in-

olved in emotion regulation to limbic and subcortical areas implicated

n emotional responses themselves may suggest that individuals with

reater emotion regulation abilities are less likely to develop creativ-

ty anxiety ( Ochsner and Gross, 2005 ; Wager et al., 2008 ). Overall, the

euroanatomy of the negative CA network seems to implicate both ar-

as that are classically involved in creative cognition and areas that are

nvolved in affective responding and regulation, suggesting that both

omain-specific and domain-general factors are likely to underlie dif-

erences in the neural profiles of those with high and low creativity

nxiety. Additionally, we found that areas within the visual network

lso made up part of the negative CA network. While speculative, it

s possible this reflects individual differences in the tendency to focus

ttention externally (i.e., on visual information) versus internally (i.e.,

n one’s thoughts), consistent with prior interpretations of creativity-

elated activity within occipital areas ( Boccia et al., 2015 ). This same

nterpretation – internal attention – is often made to explain the in-

olvement of the default mode network activity during creative cog-

ition as well ( Andrews-Hanna, 2012 ; Beaty et al., 2016 ; Adnan et al.,

019 ; Beaty et al., 2015 ; Yeh, Hsu, & Rega, 2019 ). Given that both visual

nd default mode network areas were implicated as related to creativ-

ty anxiety, future work could address whether individual differences

n creativity anxiety are associated with differences in the tendency to

ocus attention internally or externally. 

Although the positive network – which was comprised of nodes in-

luding the default mode network and subcortical regions – showed sig-

ificant predictive performance in the discovery dataset, the external

eneralizability analyses revealed that this network failed to predict CA r 

cores in the expected direction in an independent external validation

ample. In fact, we observed a negative association between predicted

A r scores and observed CA r scores in the external validation sample.

inding that only one of the identified networks successfully general-

zes to predict the behavioral variable of interest in an external sample

s not uncommon in work using connectome-based predictive modeling

see, for example, Beaty et al., 2018 ; Feng et al., 2019 ; and Wang et al.,

020 ), nor is finding a negative association between predicted and ob-

erved variable of interest (see, for example, Feng et al., 2018 ). The con-

ensus from these prior studies has been that these null results or results

n the unexpected direction are not particularly meaningful (aside from

roviding evidence against the generalizability of the original finding)

nd may arise as a result of overfitting the data in the original dataset, a

ommon pitfall of machine learning-based techniques ( Dietterich, 1995 ;

elkin, Hsu, & Mitra, 2018 ). It should be noted, however, that finding

hat one network does not generalize does not suggest that the network

hat does generalize is any less meaningful. In Beaty et al., (2018) , for

nstance, the positive network was found to generalize to predict diver-

ent creative ability in a separate sample, but the negative network was

ot. That same positive network was then applied to two additional ex-

ernal samples and in each case showed robust prediction of divergent

reative ability. Together, this work provides additional support for as-

essing external validation in addition to leave-one-out cross validation

s an important step to determine the generalizability of CPM findings

 Shen et al., 2017 ). 

Future work using the connectome-based predictive modeling tech-

ique could be done to assess whether, for instance, the same pattern

f functional connections we observed here using resting state data

ould predict creativity anxiety more strongly if measured in a situa-

ion in which participants are anticipating an upcoming creative task,

or instance. Creating a situation where participants either have to be

reative or anticipate being creative may lead to more robust correla-

ions between observed creativity anxiety scores and those predicted by

he connectome-based predictive modeling approach. Indeed, previous
ork has found that predictive models built from task fMRI data often

utperform models built from resting-state fMRI data, likely due to the

nconstrained nature of collecting resting state fMRI data ( Greene et al.,

018 ). Moreover, while in this and past work ( Daker et al., 2019 ) cre-

tivity anxiety negatively predicted individual differences in real-world

reative achievement, no work has yet assessed whether creativity anx-

ety predicts task-based creative performance. Future behavioral work

an be done to establish whether such a relationship exists, and if so,

PM-based work could be completed to assess the extent to which the

unctional connections we observed in this research are specific to cre-

tivity anxiety or whether they could be explained by creative ability.

ote, however, that in this work we did control for creative achieve-

ent when establishing the set of functional connections that relate to

reativity anxiety. Moreover, our analysis shows that the exact set of

onnections found in our ‘creativity anxiety connectome’ shows very

ittle direct overlap with the set of connections found in the ‘creative

onnectome’ found in Beaty et al., (2018) . Together, this suggests that

he connections observed here appear to be fairly specific to creativity

nxiety, but work in the future could be done to rule out other pos-

ible confounds. One of the key benefits of the CPM approach is the

bility to easily apply profiles of connectivity identified in one context

o test predictions in new contexts and datasets, facilitating clear tests

f replicability and generalizability across studies. We have made the

et of connections related to creativity anxiety that we identified in the

resent research available for other researchers (see Supplementary ma-

erial Dataset S1 and S2 ). We additionally note that while CPM is a very

seful data-driven technique, by design it does not directly assess the

elative importance of specific connections within the networks that it

dentifies or the theoretical implications thereof. It is our hope that the

resent work will inform future hypothesis-driven research that employs

ther methods to better understand the neural correlates of creativity

nxiety. 

In addition to exploring for the first time the neural correlates of

reativity anxiety, the present work also represents the development of

 Chinese language version of the Creativity Anxiety Scale. Results of

xploratory factor analysis showed that the Chinese translation of the

reativity Anxiety Scale produces separable responses to items meant to

easure anxiety toward situations that require creativity (CA items) and

ontrol items meant to measure anxiety toward similar, but non-creative

ituations (NAC items). Moreover, in both of the samples involved in the

resent research, anxiety ratings were higher for hypothetical situations

hat involved creativity than those that did not. Taken together, these

esults show that the Chinese translation of the CAS measures the con-

truct of creativity anxiety well, opening the door for research on cre-

tivity anxiety in Chinese-speaking samples (the largest native-speaking

opulation on Earth). Interestingly, while gender differences in the ex-

ent to which CA scores were higher than NAC scores were observed

n American samples in Daker et al., (2019) , no such differences were

ound in the present Chinese samples. Additionally, only one of the two

hinese samples collected for the present research showed that creativ-

ty anxiety predicted individual differences in creative achievement. Fu-

ure cross-cultural work can be done to better understand how and why

reativity anxiety may operate differently in American and Chinese cul-

ural contexts. 

. Conclusion 

After developing a Chinese language version of the Creativity Anxi-

ty Scale and replicating key behavioral findings on creativity anxiety,

e conducted the first investigation into the neural correlates of cre-

tivity anxiety by performing connectome-based predictive modeling

f resting state fMRI data to predict individual differences in creativity

nxiety. A network of whole-brain functional connections that predicted

ndividual differences in creativity anxiety – comprised largely of areas

ithin executive, salience, and default mode networks and in limbic and

ubcortical regions – was identified. The profile of functional connec-
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ions related to creativity anxiety in one sample was found to predict

ndividual differences in creativity in an independent sample, demon-

trating the replicability of these findings. Moreover, the functional con-

ections relating to creativity anxiety were found to be largely distinct

rom those that previous research identified as relating to divergent cre-

tive ability ( Beaty et al., 2018 ), demonstrating the specificity of our

esults and providing initial neural indication that creativity anxiety is

 distinct construct from creative ability. 
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