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A B S T R A C T

Recent studies have provided insight into inter-individual differences in creative thinking, focusing on charac-
terizations of distributed large-scale brain networks both at the local level of regions and their pairwise in-
teractions and at the global level of the brain as a whole. However, it remains unclear how creative thinking
relates to mesoscale network features, e.g. community and hub organization. We applied a data-driven approach
to examine community and hub structure in resting-state functional imaging data from a large sample of par-
ticipants, and how they relate to individual differences in creative thinking. First, we computed for every
participant the co-assignment probability of brain regions to the same community. We found that greater capacity
for creative thinking was related to increased and decreased co-assignment of medial-temporal and subcortical
regions to the same community, respectively, suggesting that creative capacity may be reflected in inter-
individual differences in the meso-scale organization of brain networks. We then used participant-specific com-
munities to identify network hubs—nodes whose connections form bridges across the boundaries of different
communities—quantified based on their participation coefficients. We found that increased hubness of DMN and
medial-temporal regions were positively and negatively related with creative ability, respectively. These findings
suggest that creative capacity may be reflected in inter-individual differences in community interactions of DMN
and medial-temporal structures. Collectively, these results demonstrate the fruitfulness of investigating mesoscale
brain network features in relation to creative thinking.
1. Introduction

Neurocognitive research on brain structure and dynamics related to
creative thinking is increasingly growing, with an established society for
the Neuroscience of Creativity (https://tsfnc.org/), several systematic
reviews, edited books, and special issues dedicated to the topic (e.g.,
Abraham, 2018; Beaty et al., 2016; Beaty et al., 2019; Benedek and Fink,
2019; Benedek et al., 2018; Gonen-Yaacovi et al., 2013; Shen et al.,
2017). These endeavors have greatly benefited from network neurosci-
ence methodologies (Medaglia et al., 2015), applying graph theoretical
methods to represent and study the brain as a complex system. Network
neuroscience research of creativity has begun to reveal the network
structure and dynamics that underpin the complex mechanisms of the
creative brain (Beaty et al., 2019). Such studies have, for example,
ia, Department of Psychology, P
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identified unique functional connectivity patterns that predict individual
differences in creative ability (Beaty et al., 2018; Gao et al., 2017; Li
et al., 2017; Sun et al., 2019; Takeuchi et al., 2012, 2017; Wei et al.,
2014), investigated how brain networks interact during divergent
thinking (Beaty et al., 2015; Beaty et al., 2017; Benedek et al., 2016;
Green et al., 2015; Shi et al., 2018; Vartanian et al., 2018), and examined
how white matter connectivity patterns constrain neural dynamics in
relation to creative thinking (Kenett et al., 2018; Ryman et al., 2014).

Several studies have examined how functional connectivity patterns
in resting-state (RS) fMRI data relate to creative performance (Beaty
et al., 2014; Fink et al., 2018; Shi et al., 2018; Sun et al., 2019; Zhu et al.,
2017). Functional connectivity of RS-fMRI measures synchronized pat-
terns of spontaneous brain activation during rest (Fox and Raichle,
2007). Such studies typically collect RS fMRI data, compute network
hiladelphia, PA, 19104, USA.
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connectivity via Pearson’s correlations, and then associate features of
these networks with participants’ performances on a divergent thinking
task. Divergent thinking (DT) tasks measure a person’s ability to generate
solutions to open-ended problems, such as inventing new uses for objects
(Acar and Runco, 2019; Runco and Acar, 2012). DT tasks are considered
to provide a reliable index of general creative ability (Acar and Runco,
2019; Runco and Acar, 2012). RS fMRI studies have shown that higher
coupling between the default mode network (DMN) and the executive
control network (ECN) in the “resting brain” is correlated with higher DT
performance (Beaty et al., 2014; Zhu et al., 2017). A recent study found
that DMN-ECN coupling at rest predicts the strength of the connections
between these two networks during performance on a DT task (Shi et al.,
2018), highlighting the utility of analyzing RS data in relation to creative
performance. Finally, Fink et al. (2018) have recently shown that training
in DT leads to changes in the connectivity patterns of several brain net-
works in RS data, further demonstrating a correspondence between RS
and task-state brain networks relevant to creative thought. All of these
studies focus on features of structural and functional brain networks at
the local scale of brain regions and their connections.

Many studies have investigated network architecture and its rela-
tionship with cognition at the local scale of individual nodes and edges.
For example, by assessing the extent to which the weight of a functional
connection is correlated with performance on a task. Alternatively, many
studies have addressed similar questions at the global scale of the
network as a whole. For example, by assessing the extent to which
network measures like efficiency (Latora and Marchiori, 2001) vary with
performance. However, brain function and dynamics are also shaped by
organizational properties of clusters or modules (i.e., at the meso-scale;
Fortunato, 2010; Meunier et al., 2010; Sporns and Betzel, 2016). In the
current study, we extended network neuroscientific research on crea-
tivity by examining how individual differences in community organiza-
tion of resting-state functional connectivity networks relate to individual
differences in creative behavior.

Situated between the local and global network level extremes is a rich
meso-scale that emphasizes subgraphs comprised of groups of nodes and
edges (Betzel and Bassett, 2017). In practice, these subgraphs are referred
to as modules or communities and defined as groups of nodes that are
more strongly connected to other nodes in the same community than to
nodes in different communities (Betzel et al., 2017, 2018, 2019; Gallen
and D’Esposito, 2019; Meunier et al., 2010; Power et al., 2011), Because
the brain regions that make up these communities exhibit similar con-
nectivity patterns and are mutually connected to one another, commu-
nities are usually interpreted as subtending similar brain and cognitive
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function (Bertolero et al., 2015; Gallen and D’Esposito, 2019). By char-
acterizing the variability of community structure across individuals or
between clinical populations, recent studies seek a deeper understanding
of neuropsychiatric disorders, development and aging, and diverse
cognitive processes (Cole et al., 2014; de Haan et al., 2012; Gu et al.,
2015). However, to date such potential differences in RS community
structure in relation to creative ability have not been explored.

While a network’s community structure describes relationships
among groups of nodes, it also can be used to define and characterize the
functional roles of individual nodes in the network (Crossley et al., 2014;
Power et al., 2013). Previous studies have highlighted the importance of
hubs in brain structure and function, and their role in realizing cognitive
functions (Sporns and Betzel, 2016; van den Heuvel and Sporns, 2013).
The participation coefficient (PC; Guimera and Amaral, 2005), for
instance, is a measurement computed based on a network’s community
structure and the distribution of each node’s connections across com-
munities (Fig. 1). Intuitively, the connections of nodes with high PC are
distributed evenly across communities, while the connections of nodes
with low PC are concentrated within a small number of communities. In
the context of neuroscience, PC is one of many indices that contribute to
define a brain region’s "hubness"; brain regions associated with larger
values of PC, by definition, straddle the boundaries of communities, and
are thought to reflect integration of information between communities
(Bertolero et al., 2015; Bertolero et al., 2018).

In the current study, we explore meso-scale RS network features in
relation to individual differences in creative thinking, as measured by DT.
We also aimed to identify specific network hubs that influence meso-
scale network communities in the highly creative resting brain. In line
with previous findings on the importance of functional connectivity
patterns across brain systems in predicting creative ability (Beaty et al.,
2018), we expected to find patterns of community structure across par-
ticipants—mainly ECN-DMN-SN—that related to individual differences
in creativity. In line with previous findings on the role of the DMN in
individual differences in creativity (Beaty et al., 2019), we expected to
find greater PC in DMN regions is associated with individual differences
in creative ability.

2. Methods and materials

2.1. Participants

The data was collected as part of a larger study on individual differ-
ences in creativity and imagination (Beaty et al., 2018). The total sample
Fig. 1. Schematic illustration of network
measures. In this study we use the concept of
multi-scale modularity and the network
measurement participation coefficient to
investigate network-level correlates of crea-
tivity. In this figure, we illustrate these con-
cepts. Modules refer to groups of nodes that
are strongly connected to other nodes in the
same module but weakly connected to other
modules. Here, we identify modules by
depicting all the nodes in the same module
the same color. Importantly, modular struc-
ture can be defined at multiple scales or
levels, encompassing coarse scales corre-
sponding to divisions of the network into a
few large modules to finer scales in which the
network is partitioned into many small
modules. Given a set of modules, the nodal
measure “participation coefficient” can be
used to identify nodes whose connections
form bridges across different modules (high
participation) or are concentrated within a
small set of modules (low participation).
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consisted of 163 participants recruited from the University of North
Carolina at Greensboro (UNCG) and surrounding community (113
women, mean age ¼ 22.50, SD ¼ 5.79). All participants were
right-handed with normal or corrected-to-normal vision, and reported no
history of neurological disorder, cognitive disability, or medication that
affects the central nervous system. The study was approved by the UNCG
Institutional Review Board.

2.2. Materials

2.2.1. Assessment of creative thinking
Participants’ creative ability was measured via a series of DT tasks,

conducted during a separate task-based functional MRI scan as well as on
a computer outside the scanner (see Beaty et al., 2018). Participants were
presented with a series of common objects and were asked, for each
object, to imagine a new and unusual use for it (Beaty et al., 2015). For
the computer-based assessment, participants had 2 min to continuously
generate alternate uses for two objects (i.e., box and rope) by typing their
responses on a desktop computer. For the scanner-based assessment,
participants had 12 s to think of a single alternate use for 23 other
common objects, and 5 s to verbally report their response via an MRI
compatible microphone (Beaty et al., 2018; Benedek et al., 2019). Re-
sponses in both DT tasks (inside and outside the scanner) were rated for
their creativity by four trained raters, using a 1 (not at all creative) to 5
(very creative) scale (Hass et al., 2018). Raters were instructed to consider
uncommonness, remoteness, and cleverness when coding responses, but
to provide a single holistic score for each response (Silvia et al., 2008).
Raters exhibited good inter-rater reliability for both DT tasks that were
conducted inside (averaged ICC ¼ 0.78) and outside (averaged ICC ¼
0.72) the scanner.

Confirmatory factor analysis was used to model the creativity ratings
of the DT tasks performed inside and outside the scanner (see Beaty et al.,
2018). This approach has been widely used, particularly in creativity
research with subjective creativity ratings (Silvia et al., 2008), to model
error variance separately from true measurement variance, yielding a
more robust and reliable assessment of underlying trait-level factors
compared to averaging (Kline, 2015). Here we specified a higher-order
latent variable model using Mplus 7.2 (Muth�en and Muth�en, 2012).
The higher-order creativity factor was indicated by two lower-order
latent factors: ratings of the DT task conducted inside the scanner and
ratings of the DT task conducted outside the scanner (see Beaty et al.,
2018 for more details on model specification). This latent model was
used to compute latent DT scores for all participants. The distribution of
participants latent DT score was normally distributed, mean DT score ¼
0, SD ¼ 0.85, skewness ¼ 0.254 (SI Fig. 1). Finally, participant’s age did
not correlate with their latent DT score, r(162) ¼ 0.08, p ¼ 0.33.

2.2.2. MRI data acquisition and preprocessing
Resting-state functional imaging data were acquired for 5 min as

participants relaxed awake in the scanner with eyes closed. Whole-brain
imaging was performed on a 3T Siemens Magnetom MRI system
(Siemens Medical Systems, Erlangen, Germany) using a 16-channel head
coil. BOLD-sensitive T2*-weighted functional images were acquired
using a single shot gradient-echo EPI pulse sequence (TR ¼ 2000 ms, TE
¼ 30 ms, flip angle ¼ 78�, 32 axial slices, 3.5 � 3.5 � 4.0 mm, distance
factor 0%, FoV ¼ 192 � 192 mm, interleaved slice ordering) and cor-
rected online for headmotion. A high resolution T1 scan was acquired for
anatomical normalization.

Functional volumes were preprocessed using the CONN toolbox (http:
//www.nitrc.org/projects/conn; Whitfield-Gabrieli and Nieto-Castanon,
2012) in MATLAB. For each participant, CONN implemented CompCor, a
method for identifying principal components associated with segmented
white matter (WM) and cerebrospinal fluid (CSF). In a first-level analysis,
CompCor components and first-order derivatives of motion were entered
as confounds and regressed from the BOLD signal. Additional pre-
processing steps—similar to those applied in Beaty et al. (2018)—
3

included high-pass filtering, linear detrending, and regression of outlying
functional volumes (>97th percentile in normative sample; global-signal
z-value threshold ¼ 5, participant-motion mm threshold ¼ 0.09) iden-
tified using the artifact removal toolbox (ART; https://www.nitrc.org/
projects/artifact_detect/).

2.2.3. Functional network construction
Whole-brain networks were computed for each participant using

CONN. Consistent with past work (Beaty et al., 2018; Finn et al., 2015;
Rosenberg et al., 2016), we used the Shen brain atlas, which consists of
268 brain regions of 2 mm dimensions and provides whole-brain
coverage of the cerebral cortex, cerebellum, and brain stem (Shen
et al., 2013). BOLD signal was extracted from each brain region, and
Fisher-transformed Pearson correlations were computed between each
pair of brain regions, resulting in a 268 � 268 brain region correlation
matrix for each participant.

2.2.4. Community detection
Brain networks can be analyzed at multiple scales, from the level of

individual nodes (local scale) to that of the network as a whole (global
scale). Situated between these extremes is a meso-scale, which focuses on
clusters of nodes and edges referred to as modules or communities (Sporns
and Betzel, 2016). Typically, a network’s community structure is un-
known a priori and must be estimated algorithmically using community
detection algorithms—data-driven heuristics for determining the number
and identity of communities in a network. Though many community
detection algorithms exist, among the most popular is modularity
maximization (Newman and Girvan, 2004). Modularity maximization
compares an observed pattern of connectivity with the pattern of con-
nectivity expected under a null connectivity model and groups nodes into
communities such that the total weight of within-module connections
maximally exceeds that of the null model. This intuition is formalized by
the modularity quality function:

Q ¼
X

ij

�
Aij � γPij

�
δ
�
σiσj

�

In this expression Aij and Pij are the observed and expected weight of
the connection between nodes i and j, and δðx; yÞ is the Kronecker delta
function, which returns a value of 1 when its arguments are equal and
0 others. Here, the inputs to the delta function are σi and σj, which
represent the community assignments of nodes i and j. Effectively, the
only elements that contribute to the above summation come from pairs of
nodes assigned to the same community. Finally, γ is a structural resolu-
tion parameter, which scales the relative importance of the null con-
nectivity model (Reichardt and Bornholdt, 2006). This parameter can be
selectively tuned to different values, with smaller and larger values
resulting in correspondingly larger and smaller communities.

Here, because the functional brain networks that we study are based
on correlation matrices, we used the null connectivity model suggested
by Bazzi et al. (2016) and set Pij ¼ 1 for all pairs of nodes. This particular
null model treats the expected correlation between pairs of nodes as
uniform and can be scaled according to the γ parameter. This particular
model also addressed interpretational issues associated with other null
models typically used for the analysis of correlation-based networks
(Rubinov and Sporns, 2011). Also, because the correct number of com-
munities was unknown ahead of time, we allowed the structural reso-
lution parameter, γ, to vary over a range. Specifically, we examined 31
different values approximately logarithmically spaced over the interval
0 to 0.2 (corresponding to the 50th percentile of all positive functional
connections aggregated across all participants). We did not analyze
larger values, as they tended to result in partitions of the network into
>100 communities.

Finally, community detection was performed separately for each of
the 163 participants with usable fMRI data and creativity scores (Fig. 1).
We optimized modularity using a generalization of the so-called

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
https://www.nitrc.org/projects/artifact_detect/
https://www.nitrc.org/projects/artifact_detect/
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“Louvain” algorithm (Blondel et al., 2008), a greedy algorithm that, in
benchmarks, has proven both accurate and fast. Specifically, we used the
GenLouvain software package implemented in MATLAB (Jutla et al.,
2011). Because the Louvain algorithm is non-deterministic, we per-
formed 50 repetitions of the Louvain algorithm for each participant and
value of γ.

2.2.5. Community co-assignment matrices
Due to the stochastic nature of the Louvain optimization algorithm

and the fact that, in general, there exists a degeneracy of near-optimal
partitions (Good et al., 2010), we elected to not focus on single point
estimates of community structure, but to construct more continuous
measures of nodes’ community assignments. To this end, we computed
the community co-assignment probability, Cij; for every pair of nodes.
Given R partitions of a network into (potentially) different communities,
the co-assignment probability of nodes i and j is equal to the fraction of all
partitions in which those nodes are assigned to the same community.
Thus, the value of Cij ranged from 0 (nodes were never co-assigned to the
same community) to 1 (nodes were always co-assigned to the same
community). As with modularity maximization, we repeated this pro-
cedure for each participant and each value of γ separately.

2.2.6. Community co-assignment density
We compare detected communities with the system labels generated

by Shen et al. (2013) by computing for each system its community
co-assignment density and comparing that observed density against a
chance model. Intuitively, co-assignment density measures the pro-
pensity for nodes of the same system to also be assigned to the same
community and is derived from the elements of the co-assignment ma-
trix, Cij. Given a system, s, we can compute its co-assignment density as:

ds ¼
X

ij2s
Cij

The value of ds depends on the size of system s, and so we standardize
(z-score) this value by comparing it against the density expected under a
null model in which the number and size of communities stay the same
but where nodes are otherwise randomly assigned to a community. Here,
we report the standardized variant of co-assignment density.

2.2.7. Z-score rand index
Whereas the community co-assignment density compares individual

partitions to individual systems, the Z-score Rand index compares entire
partitions (Traud et al., 2011). Specifically, it extends the traditional
Rand index, which measures the similarity of partitions X and Y , and
analytically compares that value against what would be expected under a
null model. The Rand index is expressed as a z-score with respect to that
distribution with larger (positive) values indicating
greater-than-expected levels of similarity between partitions X and Y .

2.2.8. Participation coefficient
In addition to co-assignment matrices, we also computed each node’s

participation coefficient (Guimera and Amaral, 2005). The participation
coefficient of node i, which we denote as PCi, ranges from 0 to 1 and
indicates the extent to which node i’s connections fall within a single
community (values close to 0) or are evenly distributed (values close to 1)
across communities (Fig. 1). Participation coefficients are calculated as:

PCi ¼ 1�
XK

s¼1

ðκis=kiÞ2

where κis is the total weight of connections node i makes to nodes in
module s, and ki is the total weight of all links incident on node i. Note
that here we use an extension of the participation coefficient to signed
networks. In this case, we report participation coefficients computed
using only positive connections (an analogous participation coefficient
4

can be computed using negative connections).

2.2.9. Permutation tests
Throughout this study we aggregate network measures at the level of

individual nodes (brain areas) into canonical systems as defined by Shen
et al. (2013). These include: default mode (DM), frontoparietal (FP),
medial frontal (MF), medial temporal (MT), subcortical (SubC), visual
association (VA), visual I (VI), and visual II (VII) systems. To assess
system-level effects, we use a permutation-based statistical approach. For
a given network measure, e.g. participation coefficient, we compute for
each system the mean value across all nodes assigned to that system.
Then we standardize (z-score) these mean values against a null distri-
bution in which we randomly and uniformly permute system labels. In all
cases, we repeat these permutations 10,000 times. The z-scored value for
system s is calculated as:

zs ¼ðxs � μsÞ=σs

where xs is the observed mean value of measure x and μs and σs are es-
timates of the mean and standard deviation obtained from the permu-
tation tests. Z-scores were subsequently transformed into p-values. When
appropriate, reported p-values were corrected for multiple comparisons
by fixing the false discovery rate at q ¼ 0:05 (Benjamini and Hochberg,
1995).

2.2.10. Analysis overview
Our analysis pipeline was as follows (Fig. 2): First, we used Pearson’s

correlations to estimate functional connectivity RS networks for each
participant (Fig. 2a). Next, we used a data-driven approach to detect, for
each participant, functional communities (Fig. 2b), and examine the
functional connectivity magnitude of brain regions across their func-
tional communities (Fig. 2c). We then computed for each participant
their functional community co-assignment (Fig. 2d) and regional
participation coefficients (Fig. 2e).

3. Results

3.1. Detected communities are variable across subjects but reflect canonical
system-level organization

As a first step, we used modularity maximization to partition func-
tional brain networks into communities— groups of nodes that are
strongly connected to one another, but weakly connected between
communities. Although the detected communities were variable, they
nonetheless resembled the brain’s known system-level organization
(Power et al., 2011). Modularity maximization is a data-driven method
for assigning a network’s nodes to modules and detecting a network’s
modular structure. Modules are groups of nodes that are densely con-
nected to one another and thought to support specialized information
processing.

To demonstrate this, we used a multi-scale analog of modularity
maximization to decompose participants’ functional connectivity net-
works into communities (Fig. 3a). While we varied in our analysis the
structural resolution parameter, γ, the association of network metrics at
different resolutions with DT scores were highly correlated (SI Fig. 2). As
such, all reported correlations represent averages across γ unless stated
otherwise. We then compared these data driven identified communities
to the Shen atlas (Shen et al., 2013) partition of neural systems (Fig. 3b).
To do so, we first computed for each participant their community
co-assignment matrix (how frequently are nodes u and v assigned to the
same community, (Fig. 3c). Next, to demonstrate that these communities
exhibited overlap with canonical brain systems, we computed two sta-
tistics: 1) the z-score of the Rand index and 2) normalized co-assignment
density. The z-score of the Rand index (z-Rand) is a scalar whose value
represents the similarity of two partitions to one another. Here, we
compared detected partitions with the system partition derived in Shen



Fig. 2. Overall analysis flow of our study. (a) Our analysis began with functional connectivity matrices. We then subjected these matrices to a data-driven
modularity maximization approach, which generated estimates of community structure. (b) We show here a force-directed layout of a typical network (thresh-
olded at 7.5% for visualization) with communities by color. (c) The same network is shown in 1a but with rows and columns ordered by detected communities. (d) We
iterated the community detection approach many times, generating a series of potentially dissimilar community partition estimates. These were aggregated and used
to construct a co-assignment matrix, whose elements equal to the fraction of partitions in which every pair of nodes were both assigned to the same community. (e)
Given a modular partition, we also calculated each node’s participation coefficient, which measured the extent to which its connections were uniformly distributed
across communities.

Fig. 3. Detecting functional communities across participants and comparing them to the Shen atlas system partition. (a) Functional connectivity matrix with
rows and columns reordered by communities detected using modularity maximization. (b) Same matrix reordered by system labels from Shen et al. (2013). (c)
Co-assignment matrix whose elements were estimated based on detected communities, but shown, here, reordered according to Shen et al. system labels. (d) We
compared the detected communities with the Shen labels by computing the z-score of the Rand index. In general, larger values indicated greater similarity. (e) We
calculated the z-scored co-assignment density for each Shen system, as the sum of all elements in the co-assignment matrix that fell within a given system. These values
were then standardized against a permutation-based null model and expressed as z-scores.
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et al. (2013). In general, larger values of z-Rand indicate greater simi-
larity between detected communities and the canonical systems. The
normalized co-assignment density, on the other hand, was computed at
the level of individual brain systems and measures how frequently nodes
in the same system were co-assigned to the same community by the
modularity maximization algorithm. As with z-Rand, we standardized
this measure (based on a permutation test) and express it as a z-score for
each system.

In general, we found a strong correspondence between the detected
communities and the systems derived by Shen et al. (2013). We found
that the average z-Rand across all partitions (5.72, interquartile range of
[1.68,8.79]) was greater than expected by chance (p< 0.05, permutation
test), suggesting that at the level of whole-brain partitions, the detected
communities exhibited a broad correspondence with known divisions of
the brain into cognitive systems (Fig. 3d). Next, we generated a
5

composite co-assignment matrix by averaging data from all participants
and computed the co-assignment density within each of the eight systems
in Shen et al. (2013). With the exception of the subcortical system, we
found that each system exhibited co-assignment densities greater than
chance (p < 0.05, permutation test; Fig. 3e).

To achieve this analysis, we used a data-driven approach to derive
clusters (communities) of brain regions based on connectivity informa-
tion alone. Importantly, we demonstrate that the detected communities
correspond to known anatomical and functional subdivisions of the
human brain. This comparison is carried out using the z-scored Rand
index (Traud et al., 2011). Essentially, this measure estimates the degree
of similarity between two sets of clusters while correcting for biases that
might be introduced by the number and size of the clusters. Notably,
while the relationship of the detected communities and the network la-
bels from Shen et al. (2013) passes statistical tests of significance, it is
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also inexact. While the origins of this inexactness are unclear, one
possible explanation is that community structure, when evaluated at the
level of individual participants, is variable and may not match system
labels defined at the level of the group (e.g., Horien et al., 2019). In the
rest of this paper, we investigate the relationship of this variability with
an index of creativity.
3.2. Creative thinking ability is marked by differences in community
structure

In the previous section we showed that, across a large cohort, func-
tional brain networks can be partitioned into communities that recapit-
ulated previously-described cognitive systems. We also demonstrated
that these communities varied across individuals and repeated runs of the
community detection algorithm. We hypothesized that this variance was
related to inter-individual differences in creative ability, as measured by
DT. To test this hypothesis, we first computed for each participant their
community co-assignment matrix, whose elements measure, in a graded
sense, the probability that two nodes were assigned to the same com-
munity. Then, using a mass-univariate testing procedure, we computed
the correlation of community co-assignments with participants’ DT
scores.

In agreement with previous reports (Beaty et al., 2018), we found
community-level correlates of creative thinking distributed across the
entire brain and involving virtually all subsystems (Fig. 4a and b). To
provide a more intuitive and visual summary of these findings, we
calculated for each network node the mean correlation of its connections
with DT indices. To further summarize these findings and at the
system-level, we aggregated mean node-level correlations by system and
computed the mean correlation over all constituent nodes. We then
transformed each mean correlation value into a z-score by comparing it
against the distribution of correlation values that are expected had
communities been randomly and uniformly permuted (1000 permuta-
tions; Fig. 4c). We found that increases in DT scores were accompanied
by a consolidation of medial temporal areas into the same community (p
< 0.05, non-parametric permutation test; Fig. 4d). Furthermore, we also
found a fragmentation of subcortical communities (p < 0.05,
non-parametric permutation test; Fig. 4d). These within-system effects
occurred in tandem with a series of between-system effects, which
included increased co-assignment of medial frontal areas with visual,
visual association, and medial temporal systems, as well as decreased
co-assignment of subcortical systems with visual and fronto-parietal
Fig. 4. Correlation of co-assignment probability and individual differences in cr
with creative ability across participants. (b) Same plot as in panel a; retaining onl
(positive, negative, or not significant). (c) We aggregated the elements of the matrix sh
mean system-level correlations against the null distribution generated using a permu
with all other connections and subsequently aggregated these connections by system.
had system labels been uniformly and randomly permuted. We expressed the orig
correlation connectivity weight and creativity across all functional connections incid
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networks, and visual with visual association networks (p < 0.05,
non-parametric test; Fig. 4c). Collectively, these findings posit a link
between the brain’s community-level functional architecture and an in-
dividual’s DT scores (see Fig. 4e for an example).
3.3. Creative thinking ability is marked by redistribution of network hubs

Participation coefficient is a network measure defined at the level of
individual nodes that indicates the extent to which a nodes’ connections
are distributed uniformly across modules (high participation) or
concentrated within a module (low participation; Guimera and Amaral,
2005). Because high participation nodes connect to many different
modules and because modules are thought to support specialized brain
function, nodes with high participation are thought to participate in
multiple functional domains.

While participation coefficient (PC) has been studied extensively in
the context of functional brain networks (Bertolero et al., 2018; Gordon
et al., 2018; Power et al., 2013), little is known about how PC and the
spatial distribution of hubs reconfigure in higher-creative individuals
relative to lower-creative individuals. To explore this question, we
computed for each participant their PC for each of the 268 brain regions
(Fig. 5a) and ranked these values. The ranking of the PC was done to
remove inter-individual differences in baseline PC, which can be driven
by global network properties (e.g. mean connection weight; See SI Fig. 3
for distribution of PC across the brain and across systems). Then we
calculated for each brain region the correlation across all participants of
ranked PC with their DT scores (Fig. 5c). Interestingly, we found
considerable heterogeneity in terms of PC-creativity associations. In
particular, we found that brain regions traditionally associated with the
default mode network exhibited increased PC (p < 0.05, permutation
test; Fig. 5b). That is, connections made by default mode areas are
distributed across many communities in creative individuals, whereas
those same areas tend to concentrate their connections within a few
communities in the case of lower creativity individuals. Conversely, we
found that brain regions in the medial temporal cortex exhibited signif-
icant decreases in PC (p < 0.05, permutation test; Fig. 5b), meaning that
their connections became more concentrated within a few communities
in creative individuals (see Fig. 5d for an example).

4. Discussion

Recent network neuroscience investigations of creative thinking have
eative ability. (a) Correlation magnitude of each functional connection’s weight
y statistically significant correlations and showing only the sign of correlation
own in panel a by system labels reported by Shen et al. (2013) and compared the
tation-based null model. (d) For each node, we calculated its mean correlation
As before, we compared these mean correlations against what would be expected
inal system-level values as z-scores relative to this distribution. (e) The mean
ent upon each node.



Fig. 5. Participation coefficients of functional brain communities and how they relate to individual differences in creativity. (a) Correlation coefficients of PC
with creativity for every brain region grouped according to systems from Shen et al. (2013). (b) Correlation coefficients aggregated by brain system and standardized
(z-scored) against a null distribution obtained by randomly and uniformly permuting system assignments. (c) Scatterplot of participant-averaged ranked PC against the
correlation of PC with creativity. (d) Regional correlations of PC with creativity.
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highlighted the significance of large-scale structural and functional brain
connectivity patterns (Beaty et al., 2018; Beaty et al., 2019; Kenett et al.,
2018). In the current study, we extend this line of inquiry by exploring
how individual differences in creative thinking relate to meso-scale
properties of RS functional brain networks. Specifically, we examined
network science measures related to community structur-
e—decompositions of a network into segregated clusters (communities)
that are believed to reflect brain systems that support specialized infor-
mation processing (Bertolero et al., 2015; Gallen and D’Esposito, 2019;
Sporns and Betzel, 2016).

First, we show that, across participants, increases in creative thinking
ability are accompanied by changes in community structure. Among the
most salient is the consolidation of medial temporal areas into cohesive
communities and the fragmentation of subcortical areas into smaller
communities. A recent review examined the roles of the temporal lobes in
the creative process, and proposed a theoretical framework highlighting
the role of temporal regions in the creative process (Shen et al., 2017).
According to this proposed model, creativity involves not only a cogni-
tive control function that is realized by the ECN or an associative function
that is realized by DMN, but also a ‘temporal function’ for integrating
semantic information into novel associations and mental representations
(Shen et al., 2017). Specifically, the authors argue that temporal regions
play a role in the cognitive processing of insight through the formation of
novel associations between concepts. Such a role is attributed to forma-
tion of representations (fusiform gyrus), semantic processing and inhi-
bition of salient and prototypical responses (anterior and posterior MTG),
and integrating and accessing semantic representations (anterior and
posterior STG). Our findings for the role of a cohesive MT community in
relation to DT scores supports this theoretical model of the temporal lobe
in the creative process. Furthermore, we find a significant co-assignment
relationship between the MT community and a frontal community that
we speculate may reflect the interaction of the ‘frontal function’ with the
‘temporal function’ in the creative brain at rest.

A few direct and indirect studies have examined the role of subcor-
tical regions in creative thinking. While much more research is required,
these studies highlight the role of the dopaminergic system in divergent
thinking (Faust-Socher et al., 2014; Mayseless et al., 2013; Schuler et al.,
2019; Takeuchi et al., 2010; Tik et al., 2018). In our study, the
sub-cortical community was the only community that showed reduced
co-assignment density with the Shen atlas and negatively correlated with
the latent DT score. It is important to note that brain parcellation atlases,
such as the Shen atlas reliably parcellate cortical brain regions and are
less reliable in subcortical regions (Gordon et al., 2014). For example, Ji
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et al. (2019) have shown that there are many functionally-defined nuclei
and areas in the subcortex. Thus, grouping these multiple subcortex
components together as one community may dilute data heterogeneity.
Furthermore, more accurate parcellations of subcortical structures are
possible with increased field strength. To accurately and sensitively
parcellate sub-cortical areas, high resolution 7T fMRI scans are required
(Schuler et al., 2019; Tik et al., 2018). Finally, a recent study highlighted
the need for a universal taxonomy of functional brain network classifi-
cation in network neuroscience (Uddin et al., 2019). The authors also call
for conducting a similar approach in relation to subcortical regions.
Taken together, while subcortical regions play a role in creative thinking,
our results regarding the subcortical community should be interpreted
with caution, due to noise and coarse parcellation.

Next, we examined whether these changes in community structure
relate to changes in the distribution of network hubs (quantified using
the participation coefficient). We find that as DT scores increase, the
default mode network occupies an increasingly hub-like role with its
connections more frequently spanning modular boundaries, whereas
medial temporal areas—which form increasingly segregated and cohe-
sive communities—exhibit decreased hubness. These findings indicate
that, in addition to variation in community structure itself, inter-
individual differences in creative capacity are accompanied by varia-
tion in node roles. Previous studies have highlighted the role of the DMN
in the creative process (Beaty et al., 2016, 2019; Gonen-Yaacovi et al.,
2013) and how creativity is related to task-based coupling between
default, executive, and salience networks (Beaty et al., 2015). Thus, we
interpret our findings as highlighting the role of the RS DMN system as a
‘hub system’, playing a critical role in coordinating integration of infor-
mation across other communities which relates to higher levels of crea-
tivity. The lower average participation coefficient of the medial temporal
system corresponds with our finding of the importance of its cohesive-
ness in relation to individual differences in creativity. Together, these
findings further highlight the role of a ‘temporal function’ (Shen et al.,
2017) in creativity and its expression in the resting brain.

Our study has a few potential limitations. One limitation is the use of
the Shen atlas and its identified communities (Shen et al., 2013).
Currently, there is an open discussion on the use of different brain atlases
in parcellating MRI data, as well as the need to move towards individual
based parcellation approaches (Arslan et al., 2018; Eickhoff et al., 2018;
Uddin et al., 2019). However, the Shen atlas has been shown to be a
reliable parcellation atlas (Eickhoff et al., 2018). Another limitation is
that our findings are based on relatively short RS scans, raising the
question of how findings may relate to DT performance in a task-based
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context (Laumann et al., 2015). However, recently Shi et al. (2018) found
that RS functional connectivity relates to task-based functional connec-
tivity during DT task performance, consistent with the tight correspon-
dence typically observed between resting-state and task-based brain
networks (Cole et al., 2014).

Another limitation relates to the complexity of DT and the more basic
cognitive processes that realize it, such as cognitive control, memory, and
attention (Acar and Runco, 2019; Barbot et al., 2019; Benedek and Fink,
2019; Vartanian et al., 2019). Individual differences in DT could arise
from various sources, such as IQ, age, or gender, as well as from variance
in basic cognitive processes. To address this issue, further research
exploring the brain’s mesoscale features and how it relates to creative
thinking is required. Such future research should include control tasks to
highlight mesoscale features that uniquely relate to DT and not to general
cognitive capacities (e.g., contrasting creativity with intelligence; Kenett
et al., 2018), and conduct such analysis on task-based fMRI data to
determine how such features may predict creative capacity (e.g., Beaty
et al., 2018). In that sense, our current study is merely a first step at
moving from studying the brain’s functional connectivity patterns to
studying the brain’s higher-order community structure in relation to the
creative process.

In conclusion, the current study expands current findings on neural
functional connectivity patterns in creativity (Beaty et al., 2019),
extending examinations of large-scale networks to study the roles of
meso-scale functional communities and how these properties relate to
individual differences in creativity. Our findings highlight a ‘temporal
function’ in the creative process, supported by a cohesive medial tem-
poral community, and further illustrate the ‘hub’ role of the DMN in the
creative process. Thus, examining the functional community structure of
the creative brain at rest sheds further light on the neural realization of
this complex cognitive process.
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