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Abstract 

Are intelligence and creativity distinct abilities, or do they rely on the same cognitive and neural systems? 

We sought to quantify the extent to which intelligence and creative cognition overlap in brain and behavior 

by combining machine learning of fMRI data and latent variable modeling of cognitive ability data in a 

sample of young adults (N = 186) who completed a battery of intelligence and creative thinking tasks. The 

study had three analytic goals: (a) to assess contributions of specific facets of intelligence (e.g., fluid and 

crystallized intelligence) and general intelligence to creative ability (i.e., divergent thinking originality), (b) 

to model whole-brain functional connectivity networks that predict intelligence facets and creative ability, 

and (c) to quantify the degree to which these predictive networks overlap in the brain. Using structural 

equation modeling, we found moderate to large correlations between intelligence facets and creative ability, 

as well as a large correlation between general intelligence and creative ability (r = .63). Using connectome-

based predictive modeling, we found that functional brain networks that predict intelligence facets overlap 

to varying degrees with a network that predicts creative ability, particularly within the prefrontal cortex of 

the executive control network. Notably, a network that predicted general intelligence shared 46% of its 

functional connections with a network that predicted creative ability—including connections linking 

executive control and salience/ventral attention networks—suggesting that intelligence and creative 

thinking rely on similar neural and cognitive systems.     

 

Keywords: creativity, connectome-based predictive modeling, divergent thinking, intelligence, structural 

equation modeling 
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Intelligence and Creativity Share a Common Cognitive and Neural Basis 

Intelligence is a mental faculty of undeniable importance. To successfully reason, people must draw 

from previous experiences to adapt to novel circumstances. In 1937, Bingham argued that the meaning of 

intelligence should be interpreted as the ability to “solve new problems.” Other theorists suggest that 

intelligence permits imagination, abstraction from rote experiences, and manipulation of ambiguity to make 

sense of the world (Feurestein et al., 1979, 2002; Guilford, 1967; Jensen, 1998; Terman, 1922)—all of 

which are cognitive processes that have been historically associated with creative ability (Abraham, 2018). 

The apparent overlap between intelligence and creative cognition has motivated decades of psychometric 

research aiming to characterize this relationship, with more recent evidence pointing to a considerable 

overlap between these two cognitive abilities (Silvia, 2015).  

Several questions remain, however, about the nature of the intelligence-creativity relationship, 

including whether intelligence influences creative thinking through general or specific abilities (e.g., 

visuospatial reasoning, verbal fluency) and whether intelligence and creative thinking rely on a similar 

neural architecture in the brain. In the present research, we aimed to address these questions by combining 

structural equation modeling of multiple intelligence facets with machine learning of functional brain data 

obtained during creative task performance. This approach allowed us to quantify the extent to which 

creative cognition and intelligence overlap in brain and behavior.  

Intelligence and Creative Cognition 

Broadly, creative thinking encompasses the ability to generate novel ideas and solutions that are 

task- and context-appropriate and effective (Diedrich et al., 2015; Runco & Jaegar, 2012). According to the 

controlled-attention theory of creative cognition, goal-directed idea generation is governed by top-down 

control of mental processes that promote the strategic search for task-relevant responses (Beaty & Silvia, 

2012, 2013; Benedek, Franz, Heene, & Neubauer, 2012; Jauk, Benedek, & Neubauer, 2014; Silvia & Beaty, 

2012). The quality of creative ideas is thought to depend largely upon individual differences in executive 

function, a collection of cognitive processes involved in strategic control over thought and action. In 

contrast, the associative theory of creative cognition posits that novel ideas emerge from automatic, 
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combinatory processes that are contingent upon underlying semantic knowledge structures, and that 

individual differences in creative thinking ability reflect variation in the organization of, and access to, 

concepts within semantic networks (Mednick, 1962; Kenett & Faust, 2019). More recently, arguments for 

a dual-process perspective were raised to account for the complementary interaction between executive and 

associative processes in creative cognition. According to this integrated framework, controlled executive 

abilities are needed to access associative elements and further inhibit (in the case of salient but unoriginal 

elements), adapt (transform old experiences into new ideas), and combine (link disparate concepts into 

novel responses) knowledge into high-quality ideas (Beaty et al., 2014b; Benedek & Neubauer, 2013). 

One way to measure creative cognition is with divergent thinking assessments, which require 

people to generate original ideas based on an open-ended prompt, such as generating uncommon uses for 

common objects (Guilford, 1967; Silvia, Martin, & Nusbaum, 2009). Laboratory-based creativity research 

often uses divergent thinking tasks as indications of broader creative potential (Runco, & Acar, 2012), as 

they moderately predict the frequency of real-world creative behaviors (Jauk, Benedek, & Neubauer, 2014; 

Beaty et al., 2013). Unlike convergent thinking tasks, which are evaluated in terms of speed and accuracy 

(Cropley, 2006), divergent thinking tasks encourage a variety of novel responses to stimuli that are 

inherently unexpected and tend to vary across individuals (Dygert & Jarosz, 2019). In this context, 

divergent thinking can be viewed as a cognitive ability that is supported both by associative and executive 

processes, which work together to activate diffuse semantic knowledge and override salient (but unoriginal) 

mental representations to guide the generation of novel and task-appropriate solutions (Beaty et al., 2014; 

Silvia, Nusbaum, & Beaty, 2017). 

Notably, however, performance on laboratory-assessed divergent thinking tasks does not always 

predict creative accomplishment (Barron & Harrington, 1981; Cropley, 2000; Plucker, 1999; Runco & 

Acar, 2012; Sternberg & Lubart, 1996; Zeng, Proctor, & Salvendy, 2011). One reason for this lack of 

consensus between measurement and real-world achievement is that creativity—as assessed with common 

verbal tasks of divergent thinking—is not exclusively domain-general. For example, a musician may use 

divergent thinking primarily in an auditory domain, meaning that a divergent thinking assessment in the 
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verbal domain may not adequately capture her potential for domain-specific musical creativity (Barron & 

Harrington, 1981). Taken together, although domain-general divergent thinking measures serve as viable 

indices of creative potential, such assessments do not comprehensively capture creativity as a singular entity 

because these measures alone cannot account for the multitude of factors that influence broader creative 

abilities and accomplishments (Silvia, Winterstein, & Willse, 2008), including personality, motivation, 

social context, domain experience, and intelligence (Barron & Harrington, 1981; Sternberg & Lubart, 

1991).  

Intelligence is a hierarchical construct reflecting multiple, correlated general abilities that hinge on 

executing goal-directed behavior (Gottfredson, 1997; Jensen, 1998). Mental operations, including 

reasoning, planning, problem-solving, and environmental adaptation, interact to reflect broader concepts of 

intelligence (Goldstein et al., 2015; Gottfredson, 1997; Neisser et al., 1996). Rather than merely questioning 

whether intelligence and creative cognition are associated, then, modern scientific inquiry is increasingly 

focused on delineating mechanisms to explain the nature of this often-observed relationship (Plucker et al., 

2015; Plucker & Renzulli, 1999; Silvia, 2015). Although a wealth of research has investigated relationships 

between intelligence and creative thinking, a lack of empirical resolution remains, perhaps because 

creativity and intelligence are complex constructs that have been subjected to a wide range of 

conceptualizations. However, despite considerable variability in the operationalization of these constructs, 

modern research efforts continue to focus on clarifying the creativity-intelligence relationship by 

identifying cognitive and neural operations that may play a role in intelligent and creative behavior (Jung 

& Vartanian, 2018; Sternberg & Kaufman, 2011).  

Sternberg and O’Hara (1999) proposed three interpretations of the intelligence-creativity relation: 

(a) creative thinking is an element of human intelligence, such that various cognitive factors including 

divergent thinking, memory, and complex reasoning are integral to intelligent thinking (Guilford, 1967); 

(b) intelligence is an element of creative thinking, meaning that higher-order cognitions, such as cognitive 

flexibility, inhibition, and goal-directed problem-solving, as well as the capacity for knowledge acquisition, 

comprehension, and retention, play essential roles in directing creative cognition (Sternberg, 1996), or (c) 



 

 6 

creative thinking and intelligence share overlapping features. The most widely endorsed perspective is that 

creative thinking and intelligence overlap; that is, creative thinking is similar to standard problem-solving, 

but is not identical (Kim, 2005). Similarities between creativity and intelligence include the ability to solve 

difficult problems by adopting novel perspectives, and inhibiting obvious, yet inappropriate responses. 

However, unlike intelligence assessments, the creative process often lacks a clear end-point or systematic 

set of rules which may be followed to achieve an optimal solution. Another key difference lies in 

quantifying intelligent and creative cognitions. Intelligence is often evaluated on the basis of “rightness” or 

correctness, whereas creativity is evaluated on the basis of “goodness” or the quality of original thoughts 

and behavior (Shouksmith, 1973; Sternberg & O’Hara, 1999). Importantly, both intelligent and creative 

thoughts can be right and original, which reinforces the dynamic integration of these constructs (Sternberg, 

1999).  

Although controversy exists in understanding and defining intelligence (see Carroll, 1993; Kovacs 

& Conway, 2016; Shipstead, Harrison, & Engle, 2016; Spearman, 1904; Sternberg, 1984), the widely 

influential Carroll-Horn-Carroll taxonomic model of intelligence (CHC; McGrew, 2005) proposes that 

intelligence is comprised of correlated abilities within a hierarchical framework. These abilities span a 

continuum capturing general (e.g., higher-order g) intelligence, with distinctions among broad (e.g., fluid 

reasoning) and specific (e.g., speed of reasoning) factors, which are both separable from and subsumed into 

g. A major strength of the CHC model is its flexibility in accounting for a range of intermediate abilities 

and domain-specific knowledge and skills that define human cognition (McGrew, 2005, 2009). A weakness 

of the CHC model, as a descriptive taxonomy, is that it neither illuminates whether g is a unitary cognitive 

or biological process, nor identifies the mechanisms that causally link g to lower-order cognitive abilities 

(Conway & Kovacs, 2015). However, recent network-based models of intelligence suggest that higher-

order g does not cause variation in lower-order factors, but rather that individual differences in intelligence 

reflect an emergent property of many cognitive processes that overlap or interact in solving any particular 

intellectual problem (Schmank, Goring, Kovacs, & Conway, 2019). In this vein, a summation of lower-

order factors gives rise to a psychometric index of intelligence rather than a general intelligence causing 
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variation in the lower-order factors (Van Der Maas et al., 2006). These “mutualism” perspectives, 

suggesting that g does not represent a unitary psychological construct (Conway & Kovacs, 2015; Kovacs 

& Conway, 2016; Shipstead, Harrison, & Engle, 2016; Van Der Maas et al., 2006), may support the 

argument that widespread observations of creativity-intelligence relationships in the literature reflect 

multiple processes working together to influence the extent to which creativity and intelligence overlap at 

the cognitive level. 

Another feature of contemporary research on creative cognition and intelligence has been an 

emphasis on distinguishing general from specific cognitive abilities, with general intelligence constituting 

higher-order g and specific abilities reflecting g’s  intelligence’s lower-order facets (McGrew, 2005). One 

lower-order facet of intelligence relevant to creative thinking is broad retrieval ability (Gr), which reflects 

the ability to strategically retrieve relevant concepts from long-term memory (e.g., verbal fluency tasks 

requiring people to recall all the animals they can in 2 min; Benedek et al., 2014a). Past work has found 

consistent effects of Gr on divergent thinking performance (Benedek et al., 2012, b; Lee & Therriault, 2013; 

Silvia, Beaty & Nusbaum, 2013), suggesting that divergent thinking involves controlled retrieval and the 

selection of information from memory. Additionally, crystallized intelligence (Gc)—the ability to employ 

acquired knowledge (e.g., vocabulary) to solve problems (Cattell, 1963)—correlates with divergent 

thinking performance (Cho et al., 2010), suggesting that creative thinking benefits from access to more 

learned information. Furthermore, complex reasoning and higher-order control processes reflecting fluid 

intelligence (Gf; Cattell, 1963)—the ability to solve novel problems with reasoning—also are associated 

with divergent-thinking originality (Benedek et al., 2012; Silvia, 2008; Silvia & Beaty, 2012) and adoption 

of creative strategies in divergent thinking tasks (Nusbaum & Silvia, 2011). In contrast, the relationship 

between creative thinking and the ability to mentally manipulate and reorganize three-dimensional objects, 

or visuospatial intelligence (Gv; Schneider & McGrew, 2012), is less explored; however, research has 

shown that visuospatial ability may contribute to individual differences in real-world creative achievements 

(i.e., patents and publications; Kell et al., 2013), as well as success in scientific, technological, engineering, 

and mathematical domains (Wai et al., 2009). Taken together, evidence indicates that specific facets of 
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intelligence may support performance on creative thinking tasks, pointing to an overlap between these 

cognitive abilities at the level of behavior.  

Brain Systems Supporting Creative Cognition and Intelligence 

The neural basis of creative cognition and intelligence has been examined using multiple 

neuroimaging methods, from structural MRI (Jung et al., 2010) to diffusion tensor imaging (DTI; Kenett et 

al., 2018; Takeuchi et al., 2010, 2020) to functional MRI (fMRI; Benedek et al., 2018; Jung, 2014). Recent 

fMRI investigations of creative cognition have implicated functional connectivity between large-scale brain 

networks, particularly the default network (midline and lateral parietal cortices) and the executive control 

network (lateral prefrontal and anterior inferior parietal cortices). On the one hand, the default network 

primarily supports internally-focused attention and self-referential cognition, such as episodic retrieval, 

mental simulation, and spontaneous thought (Buckner & DiNicola, 2019). On the other hand, the executive 

network primarily supports externally focused attention and executively demanding cognition, such as 

working memory, inhibitory control, and task-set shifting (Niendam et al., 2012). A third network—the 

salience or ventral attention network—plays an important role in switching between the default and 

executive control networks (Uddin, 2015). 

Although the default and executive networks support seemingly opposing modes of attention and 

cognition, default-executive cooperation is among the most consistent findings in creativity neuroscience 

(for reviews, see Beaty et al., 2016, 2019), with studies reporting functional connectivity between default 

and executive networks during creative task performance—including divergent thinking (Adnan et al., 

2019; Vartanian et al., 2018), musical improvisation (Pinho et al., 2014), and poetry composition (Liu et 

al., 2015)—and individual differences analyses reporting positive correlations between creative ability and 

default-executive connectivity (Beaty et al., 2014a, 2018; Takeuchi et al., 2017). Notably, despite the 

consistency of this connectivity profile in the literature, to date the cognitive mechanisms that modulate 

brain connectivity during creative task performance remain largely uncharacterized.  

A wealth of behavioral evidence has demonstrated links between intelligence and creative 

cognition (see Benedek et al., 2014b; Plucker et al., 2015; Silvia, 2008, 2015; Sternberg & O’Hara, 1999). 
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Indeed, specific facets of intelligence may account for individual differences in functional connectivity 

during divergent thinking. For example, substantial evidence has linked Gf to the executive network via the 

“parietal-frontal” theory of intelligence (i.e., P-FIT; Jung & Haier, 2007), supporting the hypothesis that a 

core function of the executive network is goal-directed behavior, and that this function is expressed by 

individual differences in fluid intelligence (Barbey et al., 2013). Initial evidence obtained by van den 

Heuval et al. (2009) suggests that fluid intelligence relates to efficiency of information processing at the 

level of whole-brain organization, consistent with seminal theories of intelligence and neural efficiency 

(Haier et al., 1988; Neubauer & Fink, 2009). Network neuroscience research has since extended this work 

by demonstrating a more complex role of the executive network—in coordination with other functional 

brain networks—to support goal-directed behavior (Barbey, 2018). According to a recent network 

neuroscience theory of intelligence proposed by Barbey (2018), intelligence supports goal-directed 

behavior by coordinating whole-brain network dynamics, not by modulating the activation of singular brain 

regions or networks.  

 Functional imaging research has investigated how intelligence relates to individual differences in 

brain function during goal-directed task performance. Early fMRI activation studies found that Gf 

modulates task-relevant brain regions, particularly during executively demanding tasks requiring working 

memory and attentional control (Gray et al., 2003; Lee et al., 2006). More recently, network neuroscience 

approaches have examined how intelligence interacts with brain reconfiguration during task performance. 

Schultz and Cole (2016) found that higher Gf was linked to less task-induced brain network configuration 

across several cognitive tasks (compared to baseline resting-state organization), extending early univariate 

activation findings on intelligence and neural efficiency (Neubauer & Fink, 2009) to the level of brain 

network dynamics. By combining multiple measures of intelligence with task fMRI data from the Human 

Connectome Project, Sripada et al. (2019) found that higher-order g strongly predicted default and 

executive network activity during a demanding working memory task. Specifically, as the task increased in 

difficulty, intelligence was related to greater separation of default and executive networks, such that more 

intelligent participants adapted to the task demands by forming distinct modules of default and executive 
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regions. These findings suggest that intelligence may modulate whole-brain dynamics during executively-

demanding cognitive tasks.  

 Individual differences in intelligence and creative cognition have also been studied using functional 

connectivity-based prediction methods (e.g., connectome-based predictive modeling, CPM; Shen et al., 

2017; Rosenberg et al., 2017). Such data-driven methods can reliably predict behavioral phenotypes 

including personality (Hsu et al., 2018), attentional control (Rosenberg et al., 2018), fluid intelligence (Finn 

et al., 2015), and creative cognition (Beaty et al., 2018) from functional connectivity patterns. In a recent 

CPM study of creative cognition (i.e., divergent thinking), Beaty et al. (2018) found that participants with 

higher scores on creativity assessments showed stronger functional connections between frontal and parietal 

regions within executive, salience, and default networks. Regarding intelligence, Finn et al. (2015) and 

others (e.g., Jiang et al., 2020) have used connectome prediction methods to reliably predict individual fluid 

intelligence using resting-state fMRI data, demonstrating that variation in intelligence can be reliably 

detected from patterns of whole-brain connectivity. Finn and colleagues found that although the 

frontoparietal/executive control network emerged as a distinctive feature predictive of individual 

intelligence, the predictive patterns were complex and distributed across the whole brain. Taken together, 

increasing evidence indicates that similar neural systems may support intelligence and creative cognition, 

but the extent to which these cognitive abilities overlap in the brain remains unclear.  

The Present Research 

  Intelligence appears to play an important role in creative cognition, including lower-order facets of 

intelligence (e.g., Gf) contributing to divergent thinking performance (Avitia & Kaufman, 2014; Benedek 

et al., 2014; Forthmann et al., 2019; Jauk et al., 2013; Karwowski et al., 2016; Silvia et al., 2013). Related 

neuroimaging research has highlighted common and distinct neural systems supporting intelligence and 

divergent thinking, particularly within frontal and parietal regions of the executive control network (Barbey, 

2018; Chen et al., 2016; Finn et al., 2015; Jung & Chohan, 2019; Kenett et al., 2018). These findings are 

consistent with contemporary theories of creative cognition that emphasize executive and strategic 

cognitive processes involved in the controlled retrieval and combination of stored representations (Beaty et 
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al., 2016; Benedek et al., 2014a; Chen et al., 2016; Volle, 2018). However, an open question concerns how 

creative cognition relates to both lower-order, more specific facets (i.e., Gf, Gr, Gc, Gv) and high-order 

general intelligence (i.e., g). Moreover, to our knowledge, no neuroimaging study has directly examined 

how intelligence relates to brain dynamics during creative thinking. Understanding whether intelligence 

modulates brain processes relevant to creative cognition could yield new insights into the relationship 

between intelligence and creativity.      

 The present research sought to clarify the intelligence-creativity relation by combining latent 

variable modeling of behavioral data with functional MRI data acquired during performance on a divergent 

creative thinking task (using the participant sample described in Beaty et al. 2018). We assessed multiple 

lower-order facets of intelligence with theoretical relevance to creative cognition—fluid intelligence, 

crystalized intelligence, broad retrieval ability, and visuospatial intelligence—and leveraged structural 

equation models to model relationships among these cognitive abilities and divergent thinking. Notably, a 

majority of past research has assessed lower-order intelligence facets on creative task performance, and 

fewer studies have examined effects of higher-order g beyond zero-order correlations and composite 

averages, which tend to attenuate effect sizes and underestimate statistical relationships between constructs 

(McNeish & Wolf, 2019; Silvia et al., 2008). Our study thus provides a first look at how creative cognition 

relates to both specific facets of intelligence and higher-order g, providing a comprehensive analysis of the 

intelligence-creativity relationship.  

 Another major goal of the current study was to examine how intelligence and creative cognition 

overlap in the brain. To this end, we analyzed fMRI data acquired during divergent thinking, and we used 

a data-driven prediction method (i.e., CPM) to identify functional brain connections that predict 

performance on both intelligence and creative thinking tasks. Specifically, we reanalyzed neuroimaging 

data from Beaty et al. (2018), which used CPM to predict individual creative thinking performance across 

multiple datasets. We provide a novel extension of CPM that aims to identify functional connections that 

relate to both intelligence and creativity by assessing common and distinct network predictions of both 

cognitive abilities. Moreover, prior predictive models of intelligence such as CPM have only assessed g 
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and fluid intelligence; here, we examine higher-order and lower-order facts of g with a novel application 

(i.e., fMRI data collected during a creative thinking task).  

 Consistent with recent behavioral evidence (e.g., Benedek et al., 2014; Silvia et al., 2013), we 

hypothesized that specific intelligence facets would correlate positively with divergent thinking ability. 

Moreover, we expected to find a large latent correlation between g and divergent thinking, given previous 

studies reporting effects of individual lower-order facets (e.g., Beaty et al., 2014; Forthmann et al., 2019; 

Jauk et al., 2013; Silvia et al., 2013). Regarding neural effects, we hypothesized that the strength of 

functional connectivity between executive, salience, and default regions would predict divergent thinking 

ability, consistent with our prior analyses of these fMRI data (Beaty et al., 2018); however, we aimed to 

replicate and extend our recent CPM study using a new functional atlas (Schaefer et al., 2018) to determine 

whether prediction of divergent thinking is impervious to parcellation choice, given recent machine learning 

evidence demonstrating that prediction accuracy (and corresponding functional connections) are sensitive 

to the choice of brain atlas (Dadi et al., 2019; Schaefer et al., 2018). Critically, we hypothesized that 

intelligence and creativity (i.e., divergent thinking) would share common predictive brain features within 

frontal brain regions of the executive control network.      

Materials and Methods 

Participants 

This study was approved by the institutional review board at the University of North Carolina at 

Greensboro (UNCG). Participants (total N = 186, 129 women, mean age = 22.74 years, SD = 6.37) were 

recruited as part of a larger, multi-visit study designed to evaluate individual differences in creativity (see 

Beaty et al., 2018). They provided written informed consent prior to data collection and were compensated 

up to $100 based on their level of study completion. Participants were right-handed with normal or 

corrected-to-normal vision, and they were not enrolled in the study if they reported a history of neurological 

disorder, cognitive disability, or medication and other drugs known to affect the central nervous system. A 

subset of participants was excluded from the neuroimaging analysis due to excessive head movement (mean 

framewise displacement > .5 mm, n = 4; Power et al., 2012), hardware or software issues associated with 
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fMRI data collection (e.g., E-Prime crash), and incomplete behavioral data (e.g., completing lab 

assessments but not the fMRI task). After exclusions, the final sample for fMRI analysis was 171 (119 

females, mean age = 22.73 years, SD = 6.22), which differed slightly from Beaty and colleagues’ (2018) 

final sample size of 163, due to the availability of additional cases. The behavioral analyses include data 

from the full sample of participants (n = 186).  

Intelligence Assessment 

Participants completed a series of behavioral measures during two laboratory visits. The first visit 

involved neuroimaging and a subset of the behavioral measures; the second visit (approximately 1-week 

later) involved completing the remaining behavioral measures. All measures were administered using the 

MediaLab software package.  

Crystallized intelligence (Gc). Participants completed two measures of vocabulary knowledge, 

which are indicative of Gc (Kan et al., 2011): (a) the advanced vocabulary test (18 items), and (b) the 

extended range vocabulary test (24 items; ETS Kit of Factor-Referenced Cognitive Tests; Ekstrom et al., 

1976). Participants were given a total of seven minutes to complete both tasks, which required selecting the 

synonym of a word target from a list of possible answers. Each task was scored for the total number of 

correctly solved problems.  

Fluid intelligence (Gf). Participants completed three measures of Gf: (a) the number series task, 

(b) the letter sets task, and (c) the matrices task. The number series task (Thurstone, 1938) required 

identifying a pattern that dictates a series of presented numbers by selecting the next number in the sequence 

(15 items, 5 minutes); the task was scored for the sum of correctly reported numbers. The letter sets task 

(Ekstrom et al., 1976) required identifying a set of four letters that violate a rule dictating the larger set (16 

items, 4 minutes); the task was scored for the sum of correctly identified rule violations. The series 

completion task from the Culture Fair Intelligence Test (CFIT; Cattell & Cattell 1961/2008) presented a 

series of three changing progressive images, and participants were asked to select a fourth image that most 

appropriately completed the series of images (13 items, 3 minutes); the task was scored for the sum of 

correct images chosen. 
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Broad retrieval ability (Gr). Participants completed five verbal fluency tasks that assess two 

components of broad retrieval ability: ideational fluency and associational fluency (Carroll, 1993; Silvia et 

al., 2013). Ideational fluency required the generation of category exemplars for the categories (a) animal, 

(b) fruit/vegetable, and (c) occupation (Ardila et al., 2006). Participants were given one minute for each 

task and were asked to “write down [type] as many animals [fruits/vegetables, or occupations] as you can.” 

Responses consisting of non-category members were excluded, and root variations were converged (e.g., 

dogs to dog) from the final analysis using the SemNetCleaner package (Christensen & Kenett, 2019) in R 

(R Core Team, 2019). Responses were analyzed categorically, with “1” corresponding to a valid response 

and “0” corresponding to no response. Associational fluency tasks required participants to generate 

synonyms for the target terms hot and good. Participants were instructed to “write down [type] as many 

synonyms for hot (good) as you can” in one-minute. Procedures were identical to those employed for the 

category tasks, with non-synonym responses excluded from the final analysis, and binary scores recorded 

for each valid response “1” and no response “0.”  

Visuospatial intelligence (Gv). Participants completed three measures of Gv that assess the ability 

to mentally manipulate visual stimuli. For the (a) paper-folding task (Ekstrom et al., 1976), participants 

were presented with a series of individual pictorial stimuli. Each trial depicts a square piece of paper that is 

folded one or more times, with a hole punched into it. This assessment required participants to determine 

where the holes would be located if the paper were unfolded, given five potential alternatives (10 items, 3 

minutes); this task was scored for the total number of correct alternatives selected. The (b) block rotations 

task also measured abstract spatial ability (Berger, Gupta, Berger, & Skinner, 1990). Participants were 

shown a rotated, three-dimensional target block image. Participants were then asked to select one of five 

three-dimensional block choices that matched the shape of the target block, despite being presented at a 

different angle of rotation (10 items, 8 minutes); this task was scored for the total number of correct 

selections. For the (c) cube comparisons task (Ekstrom et al., 1976; Thurstone, 1938), participants were 

asked to report whether two three-dimensional cubes were equivalent or different, across various spatial 
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orientations (42 items, 6 minutes); this task was scored for the total number of correct comparisons  (see 

Supplemental Table 1 for descriptive statistics of the intelligence tasks). 

fMRI Task Procedures and Divergent Thinking Assessment 

To assess creative cognition, we combined behavioral and event-related fMRI measurement of 

divergent thinking (see Beaty et al., 2018). During functional imaging, participants completed several trials 

of the Alternative Uses Task (AUT; Guilford, 1967); they also completed a semantic control condition that 

was not analyzed here (see Beaty et al., 2018). The AUT measures divergent creative thinking, or the ability 

to generate novel responses after being presented with a single, open-ended prompt to generate creative 

uses for common objects (e.g., a brick). For the present experiment, participants completed 23 AUT trials, 

requiring one alternative use for each of the 23 trials. The trial structure included: (a) a jittered fixation 

cross (4-6 s), (b) a condition cue (3 s), (c) a silent response generation phase (12 s), and (d) a response 

production phase requiring participants to speak their response into an MRI-compatible microphone (5 s; 

cf., Benedek et al., 2014a, 2018; Beaty et al., 2018). Responses were logged by an experimenter for 

subsequent analysis of creative thinking quality. Prior to the fMRI experiment, an experimenter provided 

instructions for both tasks and participants were given several practice items. Participants were asked to use 

the response generation phase to imagine creative uses for the given object and then verbally supply their 

most creative idea during the response generation phase (Beaty et al., 2018).  Specifically, participants were 

instructed to “be creative” and “to come up with something clever, humorous, original, compelling, or 

interesting (Beaty et al., 2014b).” 

 Following the fMRI experiment, as part of the larger project, participants completed a battery of 

cognitive and questionnaire measures (including intelligence tasks) over the course of two days. The battery 

included two AUT trials (with the objects box and rope) which were not included in the pool of object items 

from the fMRI task. The purpose of the post-scan AUT assessment was to assess divergent thinking 

performance in a more conventional testing environment, and to compare performance on traditional 

divergent thinking tasks with fMRI task performance. Here, instead of allotting 12 seconds to produce a 

single idea (as in the scanner), participants were given 2 minutes to continuously generate creative object 



 

 16 

uses by typing their ideas into a text field via MediaLab. Again, participants were instructed to “be creative” 

and “to come up with something clever, humorous, original, compelling, or interesting (Beaty et al., 

2014b).” 

Because we were primarily interested in assessing relations between intelligence and creative 

cognition, we focused our divergent thinking measurement on the creative quality of ideas. We thus used 

the widely used subjective scoring approach (Silvia et al., 2008) to assign originality ratings to ideas 

generated in the scanner and during the post-scan behavioral session. Participants’ responses were 

anonymized and merged into one master file prior to the blinded scoring protocol. Four trained raters 

provided originality scores for the 23 AUT trials using a Likert-type rating scale of a 1 (not at all creative) 

to 5 (very creative; Silvia et al., 2008). The same four blinded raters scored the creative quality of behavioral 

AUT responses for each participant (see Supplemental Table 1 for inter-rater correlations).  

Analysis Plan and Model Specification 

The present research had two analytic aims: (a) to model contributions of lower-order/specific and 

higher-order/general intelligence facets to divergent thinking using latent variable models and (b) using 

CPM, to identify functional brain connections that predict both intelligence and divergent thinking. 

Regarding the behavioral aim, we specified and estimated a series of latent variable models using maximum 

likelihood estimation in Mplus 7.31. Gc, Gf, Gr, and Gv latent variables were formed using their respective 

behavioral tasks as indicators. The factor variances were fixed to 1, and the loadings for the two Gc 

indicators were constrained to be equal. Divergent thinking performance in the scanner was modeled as a 

latent variable with the four subjective ratings (one average score per rater per subject) as indicators. 

Likewise, laboratory divergent thinking performance in response to the “box” and “rope” prompts were 

modeled as separate latent variables with the four subjective ratings as indicators (Beaty et al., 2018). All 

task variables were standardized prior to analysis. The standardized effects are presented in the r metric and 

can be interpreted using the conventional small (.10), medium (.30), and large (.50) guidelines (Cumming, 

2012).  

MRI Data Acquisition and Preprocessing  
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Participants completed the tasks in a single fMRI run. Whole-brain imaging was performed on a 

3T Siemens Magnetom MRI system (Siemens Medical Systems) using a 16-channel head coil. BOLD-

sensitive T2*-weighted functional images were acquired using a single shot gradient-echo echo-planar 

imaging (EPI) pulse sequence [repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 78°, 

32 axial slices, 3.5 × 3.5 × 4.0 mm, distance factor 0%, field of view (FoV) = 192 × 192 mm, interleaved 

slice ordering] and corrected online for head motion. The first two volumes were discarded to allow for T1 

equilibration effects. Visual stimuli were presented using E-Prime and viewed through a mirror attached to 

the head coil. In addition to functional imaging, a high resolution T1 scan was acquired for anatomic 

normalization. Preprocessing of the anatomical and functional data were performed using 

fMRIPrep1.4.1rc1 (Esteban, et al., 2019); note that our prior CPM study, on a subset of the data analyzed 

here (Beaty et al., 2018), did not use fMRIPrep to preprocess MRI data as it was not yet available. 

Anatomical data preprocessing. The T1-weighted (T1w) image was skull-stripped and corrected 

for intensity non-uniformity (INU) using ANTs v.2.2.0 (Avants et al., 2008). Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was performed on the brain-extracted 

T1w using FAST in FSL v.5.0.9 (Zhang et al., 2001). Brain surfaces were reconstructed using FreeSurfer 

v.6.0.1 (Dale et al., 1999), and the brain mask estimated previously was refined with a custom variation of 

Mindboggle (Klein et al., 2017). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym; Fonov et al., 2009) was performed through nonlinear registration with ANTs, 

using brain-extracted versions of both T1w reference and the T1w template.  

Functional data preprocessing. For each BOLD run per subject, first a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD reference was 

then co-registered to the T1w reference FreeSurfer, which implements boundary-based registration (Greve 

& Fischl, 2009). Co-registration was configured with nine degrees of freedom to account for distortions 

remaining in the BOLD reference. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) are estimated before 

any spatiotemporal filtering using FSL (Jenkinson et al., 2002). BOLD runs were slice-time corrected using 
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AFNI (Cox & Hyde, 1997). The BOLD time-series were then resampled into MNI space using ANTs. 

Framewise displacement (FD) and three region-wise global signals extracted from CSF, the WM, and the 

whole-brain masks, respectively, were also computed as confound regressors (Satterthwaite et al., 2013; 

Power et al., 2014).  

Functional network construction and preprocessing. Whole-brain functional brain networks were 

constructed using the Functional Connectivity (CONN) toolbox in MATLAB (Whitfield-Gabrieli & Nieto-

Castanaon, 2012). To extend our recent study (Beaty et al., 2018) using a different functional brain atlas 

(i.e., Shen et al., 2017) and a slightly larger sample, we sought to determine whether divergent thinking 

prediction is agnostic to parcellation by constructing networks using the Schaefer parcellation (Schaefer et 

al., 2018; note that, unlike the Shen atlas, the Schaeffer atlas does not include the subcortex and cerebellum). 

To improve comparison with our prior work, we selected a network parcellation with a comparable number 

of nodes (i.e., 300) with coverage of the seven major canonical intrinsic connectivity networks (i.e., 

executive control, salience/ventral attention, default, dorsal attention, visual, somatomotor, and limbic). 

BOLD signal was extracted from each of the 300 regions during the thinking period of the AUT (23 trials, 

12 s; collapsing across trials), and bivariate correlations were computed between each pair of ROIs, 

resulting in a 300 × 300 correlation matrix for each participant. In a first-level analysis, white matter and 

CSF masks, along with first-order derivatives of motion, were entered as confounds and regressed from the 

ROI timeseries. Additional preprocessing steps included high-pass filtering, linear detrending, and 

regression of outlying functional volumes (FD > .5; Power et al., 2012). The onsets and durations of the 

verbal response periods were regressed to account for expected artifacts related to participant vocalization. 

Connectome-based predictive modeling. As in our prior work (Beaty et al., 2018), CPM was used 

to identify functional connectivity networks related to divergent thinking ability. Here, we provide a novel 

extension of this recent study (and the CPM approach) by identifying functional connectivity networks that 

predict both lower-order/specific and higher-order/general intelligence facets using fMRI data acquired 

during the divergent thinking task. This allowed us to quantify the degree of overlap between intelligence 
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and creativity in the brain by identifying functional brain connections that predict both constructs (cf., Lake 

et al., 2019; Rosenberg et al., 2018; Wu et al., 2020).  

CPM was executed using the standard pipeline employed in our past work on divergent thinking 

(Beaty et al., 2018) as well as several other studies (Finn et al., 2015; Rosenberg et al., 2018). A thorough 

and concise tutorial on the CPM approach was recently published by Shen and colleagues (Shen et al., 

2017). CPM builds a model of functional connectivity features to predict behavioral scores in new (unseen) 

participants using leave-one-out cross validation. Here, the behavioral scores were creativity and 

intelligence factors extracted from a latent variable model (cf., Beaty et al., 2018) that used the full sample. 

The CPM pipeline involves: (a) leaving out data from a test participant for cross-validation, (b) correlating 

a behavioral vector (e.g., creativity or intelligence scores) with all edges in the remaining participants’ 

functional connectivity matrices, (c) thresholding these matrices to retain significantly positively and 

negatively correlated edges (p < .01), (d) summing these thresholded edges to obtain measures of functional 

connectivity strength (i.e., positive and negative networks), (e) fitting a linear model (regression) to estimate 

the brain-behavior relationship for the positive and negative networks, and (f) applying the model to data 

from the left-out participant to predict their behavioral score. The resulting predictive models are tested for 

statistical significance by correlating the model-predicted and observed behavior scores with the magnitude 

of the correlation reflecting the explanatory power of the model. Because the leave-one-out folds are not 

independent, we conducted permutation tests for all analyses by randomly shuffling the behavior scores 

(creativity and intelligence facets) 1,000 times and rerunning each CPM, creating a null distribution of r 

values; the p values of the empirical correlation values (based on their respective null distribution) were 

computed by dividing the number of permutation r values greater than the empirical r value by 1,000. All 

CPM models below report these permutation p values in parentheses alongside corresponding r values.  

We estimated separate predictive models for the intelligence and creativity variables using the 

latent factor scores and divergent thinking functional connectivity matrices. To examine the extent of 

overlap between the creativity and intelligence networks, we computed the proportion of shared predictive 
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features in the final CPM masks. This approach allowed us to directly probe the intelligence-creativity 

relationship by testing whether specific brain connections similarly predict these cognitive abilities.  

Results 

Descriptive statistics for the intelligence factor and divergent thinking measures are displayed in 

Tables 1 and 2, respectively. Pearson correlations are visualized with a heatmap in Figure 1; a numerical 

correlation matrix is presented in Supplemental Table 1.   

Intelligence and Divergent Thinking Measurement Models 

We first specified a measurement model of the four lower-order intelligence factors: Gf, Gc, Gr, 

and Gv. This model fit the data well: χ2 (60 df) 88.999, p = .009; CFI .941; RMSEA = .051 [90% CI: .026, 

.072]; SRMR = .058. Figure 2 depicts the model and inter-correlations between the latent factors. All 

indicators showed significant loadings on their respective latent variables. Consistent with past work, the 

model showed significant correlations between all four intelligence factors, including a moderate 

correlation between Gf and Gc (r = .42, p < .001) and a large correlation between Gf and Gv (r = .59, p < 

.001).  

We then specified a higher-order model to assess how the four intelligence factors load onto a 

higher-order g factor: χ2 (62 df) 99.012, p = .002; CFI .924; RMSEA = .057 [90% CI: .035, .077]; SRMR 

= .066. The model showed significant loadings of the lower-order factors onto a higher-order factor 

(magnitude of factor loadings in descending order): Gf (.79), Gc (.66), Gv (.62), and Gr (.60). 

Next, we specified a measurement model for the three divergent thinking variables: two lab-based 

tasks (box and rope) and the MRI-based tasks. The four raters’ creativity ratings served as indicators for 

their respective latent variable. Figure 3 depicts the model, which showed good fit: χ2 (51 df) 78.410, p = 

.008; CFI .985; RMSEA = .054 [90% CI: .028, .076]; SRMR = .040. The four raters’ ratings loaded highly 

on the three latent variables, consistent with the high level of rater agreement and significant zero-order 

correlations. As expected, the two lab-based divergent thinking variables showed the largest latent 

correlation (r = .64, p < .001). Notably, both lab-based variables showed large correlations with the MRI 

variable: MRI and box (r = .55, p < .001) and MRI and rope (r = .49, p < .001). 
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Then, we specified a higher-order model to assess how the lab- and MRI-based divergent thinking 

variables load onto a higher-order factor: χ2 (51 df) 78.410, p = .008; CFI .985; RMSEA = .054 [90% CI: 

.028, .076]; SRMR = .040. The model showed significant loadings of the lower-order factors onto a higher-

order factor (magnitude of factor loadings in descending order): DT box (.84), DT rope (.76), and DT MRI 

(.65). 

Figure 1. Pearson correlations beween all observed variables. dt1 = divergent thinking, box; dt2 = divergent 

thinking, rope; dt_mri = divergent thinking from MRI trials (rater 1-4); gc_adv = crystallized intelligence, advanced 

vocabulary; gc_ext = crystallized intelligence, extended range; gf_cfiq = fluid intelligence, Cattell Series Completion; 

gf_lets = fluid intelligence, letter sets; gf_nums = fluid intelligence, number series; gr_ani = broad retrieval ability, 

animal category fluency; gr_good = broad retrieval ability, synonyms for ‘good’; gr_jobs = broad retrieval ability, 

occupations category;  gr_hot = broad retrieval ability, synonyms for ‘hot; gr_veg = broad retrieval ability, fruits and 

vegetables category; gv_block = visuospatial intelligence, block rotation; gv_cubes = visuospatial intelligence, cube 

comparison; gv_paper = visuospatial intelligence, paper folding.   
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Relationships Between Divergent Thinking and Intelligence  

Having specified measurement models of intelligence and divergent thinking, we turned to assess 

relationships between these cognitive abilities. We began by examining latent correlations between the 

higher-order divergent thinking variable and the four lower-order intelligence factors. A confirmatory factor 

analysis showed good fit: χ2 (263 df) 337.831, p = .001; CFI .968; RMSEA = .039 [90% CI: .025, .051]; 

SRMR = .052. The intercorrelations between the latent variables (and 95% confidence intervals) are 

displayed in Table 3. The model showed significant correlations between all intelligence factors and 

Figure 2. Confirmatory factor analysis of four intelligence facets. gc1 = crystallized intelligence, advanced 

vocabulary; gc2 = crystallized intelligence, extended range; gf1 = fluid intelligence, Cattell Series Completion; gf2 = 

fluid intelligence, letter sets; gf3 = fluid intelligence, number series; gr1 = broad retrieval ability, animal category 

fluency; gr2 = broad retrieval ability, synonyms for ‘good’; gr3 = broad retrieval ability, synonyms for ‘hot’; gr4 = 

broad retrieval ability, occupations category;  gr5 = broad retrieval ability, fruits and vegetables category; gv1 = 

visuospatial intelligence, block rotation; gv2 = visuospatial intelligence, cube comparison; gv3 = visuospatial 

intelligence, paper folding. N = 185. 
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divergent thinking, with magnitudes ranging from medium to large: Gr and DT, r = .32; Gf and DT, r = 

.39; Gv and DT, r = .41; and Gc and DT, r = .54. These results replicate past work (e.g., Benedek et al., 

2014; Silvia et al., 2013) and extend it by showing positive associations between divergent thinking 

creativity and four lower-order facets of intelligence.  

Our final model assessed the latent correlation between general intelligence (i.e., higher-order g) 

and divergent thinking. This CFA model estimated g as a higher-order factor, comprised of Gf, Gc, Gr, and 

Gv, serving as lower-order indicators of g, with the same latent divergent thinking variable as before: χ2 

(268 df) 351.161, p<.001; CFI .965; RMSEA .041 [90% CI: .028, .052]; SRMR .057. The results showed 

Figure 3. Confirmatory factor analysis of lab and MRI divergent thinking creativity ratings. dt1 = divergent 

thinking, box; dt2 = divergent thinking, rope; dt_mri = latent variable of creativity ratings from MRI trials (rater 1-4). 

N = 186. 
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a large correlation between g and divergent thinking: r = .63, p < .001 (see Figures 4 & 5), indicating a 

substantial overlap between general intelligence and divergent thinking.   

Figure 4. Confirmatory factor analysis of higher-order intelligence and divergent thinking. dt1 = divergent 

thinking, box; dt2 = divergent thinking, rope; dt_mri = latent variable of creativity ratings from MRI trials (rater 1-4); 

gc1 = crystallized intelligence, advanced vocabulary; gc2 = crystallized intelligence, extended range; gf1 = fluid 

intelligence, Cattell Series Completion; gf2 = fluid intelligence, letter sets; gf3 = fluid intelligence, number series; gr1 

= broad retrieval ability, animal category fluency; gr2 = broad retrieval ability, synonyms for ‘good’; gr3 = broad 

retrieval ability, synonyms for ‘hot’; gr4 = broad retrieval ability, occupations category;  gr5 = broad retrieval ability, 

fruits and vegetables category; gv1 = visuospatial intelligence, block rotation; gv2 = visuospatial intelligence, cube 

comparison; gv3 = visuospatial intelligence, paper folding. N = 186. 
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Connectome Prediction of Divergent Thinking and Intelligence Facets 

 We then examined the extent to which intelligence and divergent thinking overlap in the brain. To 

this end, we employed CPM to identify functional brain connections that predict divergent thinking and 

intelligence (both specific factors and a general factor), with the neural data consisting of functional 

connectivity during the divergent thinking task and the behavioral data consisting of factor scores extracted 

from the higher-order latent variable model (see Figure 4). We quantify the extent to which networks 

overlap by computing the proportion of predictive connections (edges) that appear in intelligence and 

divergent thinking networks (Rosenberg  et al., 2018). Note that we focus on the positively correlated 

networks (i.e., high-ability networks) because we did not have predictions about negatively correlated 

networks. The following analyses use the reduced sample with fMRI data (n = 171) .    

 First, we assessed prediction of individual divergent thinking ability based on functional 

connectivity patterns during the DT task. Replicating our prior work (Beaty et al., 2018) with a different 

functional brain atlas, we found a large positive correlation between the model-predicted and actual 

divergent thinking scores (r = .41, p < .001). Beaty et al., 2018, r = .30). The DT network (i.e., the overlap 

of all leave-one-out models) was distributed across the brain, with the highest-degree nodes (i.e., regions 

with more functional connections) concentrated within frontal lobes, predominantly within the executive 

network, as well as the visual, salience/ventral attention, and default networks (see Table 4 and Figures 6 

Figure 5. Scatterplot of the latent correlation between general intelligence (g) and divergent thinking (dt) 

creativity scores. Latent variable values are standardized for visualization. N = 186. 
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and 7). The highest proportion of functional connections (i.e., edges) was found between left executive 

control and right salience/ventral and dorsal attention networks (i.e., 9%; see Figure 8). Participants with 

Figure 6. Functional brain networks that predict divergent thinking ability and intelligence. Observed behavior 

scores are latent variable factor scores extracted from the higher-order CFA (see Figure 4). Latent variable values are 

standardized for visualization. To further aid visualization of network connections, each network was thresholded at 

2% of their total functional connections (i.e., degree). For example, the DT network included a total of 933 

connections, so a 2% degree threshold applied to this network mask is 19; thus, nodes with at least 19 connections (k) 

are displayed in the DT network above. N = 171.   
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stronger connections in this overall network thus tended to produce more original responses on the divergent 

thinking assessments.  

  Next, we assessed the extent to which lower-order intelligence facets could be predicted from 

functional connectivity patterns during the DT task. Our first intelligence model examined prediction of Gc 

(crystallized intelligence; i.e., vocabulary knowledge). Results showed a significant correlation between  

the model-predicted and observed Gc scores (r = .30, p < .001). High-degree nodes were found within the 

visual, executive, salience, somatomotor, and default networks. The highest proportion of edges (5%) was 

found between the left salience/ventral attention network and the right executive network. The Gc network 

shared 13% functional connections with the DT network (common edges = 158); the Gc network included 

a total of 425 edges, so it shared 37% of its edges with the DT network. The combined DT-Gc network 

Figure 7. Connectome rings depicting functional networks that predict divergent thinking ability and 

intelligence. The seven networks of the Schaefer et al. (2018) atlas are labeled around the connectome rings for each 

hemisphere (left and right). The relative size of the colored network labels in each ring represents the relative number 

of edges in each network (larger labels = more edges). Note that these networks correspond to the unthresholded 

network masks displayed in Figure 5. DAN = dorsal attention network; DN = default network; ECN = executive 

control network; LN = limbic network; SMN = sensorimotor network; VN = visual network; RH = right hemisphere; 

LH = left hemisphere; N = 171.   
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consisted of high-degree nodes within executive, visual networks, and salience/ventral attention (see Table 

5), with the highest proportion of common edges found between the left salience/ventral attention network 

and the right control network (5%). Figures 9 and 10 depict the combined overlap of functional connections 

and the proportion of common connections, respectively. Figure 11 visualizes the overlap of the DT 

network with all intelligence networks, as well as the overlap of all intelligence networks.  

We then examined prediction of Gf (fluid intelligence) based on functional connectivity patterns 

during the DT task. Results showed a significant correlation between the model-predicted and latent Gf 

score (r = .31, p < .001). Similar to the Gc network, several of the highest-degree nodes were found within 

Figure 8. Proportion of edges between all pairs of networks in the divergent thinking and intelligence networks. 

The proportion of edges scales with the shade of green in each cell (more edges = darker green).  The denominator of 

the cells reflects the total number of edges in the respective network, and the numerator reflects the number of edges 

found between a given network pair. The seven functional networks of the Schaefer et al. (2018) atlas are listed for 

both hemispheres along the x- and y-axes. DAN = dorsal attention network; DN = default network; ECN = executive 

control network; LN = limbic network; SMN = sensorimotor network; VN = visual network; RH = right hemisphere; 

LH = left hemisphere; N = 171.   
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the visual network, with additional high-degree nodes distributed across the executive, salience/ventral 

attention, dorsal attention, and default networks. The highest proportion of edges (7%) was between the left 

salience/ventral attention and right visual networks, among other networks. The Gf network shared 12% of 

functional connections with the DT network (common edges = 170); the Gf network included a total of 617 

edges, so it shared 28% of its connections with the DT network. The combined DT-Gf network consisted 

of high-degree nodes within executive networks, salience/ventral attention, visual, and dorsal attention 

networks, with the highest proportion of edges (2%) found between the left salience/ventral attention 

several networks, including right executive control, right dorsal attention, and right visual networks, among 

other networks (see Figure 10).  

Next, we examined prediction of Gr (broad retrieval ability) based on functional connectivity 

patterns during the DT task. Results showed a small correlation between the model-predicted and latent Gr 

                     

                    

                    

                         

                    

                  

                    

                         

    

                    

                       

Figure 9. Connectome rings depicting the overlap of functional networks that predict divergent thinking ability 

and intelligence. Network overlap masks were computed by multiplying the binary cells of the divergent thinking 

and intelligence  network masks shown in Figure 7. The seven networks of the Schaefer et al. (2018) atlas are labeled 

around the connectome rings for each hemisphere (left and right). The relative size of the colored network labels in 

each ring represents the relative number of edges in each network (larger labels = more edges). Note that these 

networks correspond to the unthresholded network masks displayed in Figure 6. DAN = dorsal attention network; DN 

= default network; ECN = executive control network; LN = limbic network; SMN = sensorimotor network; VN = 

visual network; RH = right hemisphere; LH = left hemisphere; N = 171.   
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score (r = .18, p = .03). The highest-degree nodes were found within the control network, with other high-

degree nodes distributed across the salience/ventral attention, default, dorsal attention, and somatomotor 

networks. The highest proportion of edges (3%) was between the left control and right dorsal attention 

networks. The Gr network shared 3% of functional connections with the DT network (common edges = 

37); the Gr network included a total of 244 edges, so it shared 15% of its connections with the DT network. 

The combined DT-Gr network consisted of high-degree nodes within control, default, salience/ventral 

Figure 10. Proportion of edges between all pairs of networks in the combined divergent thinking and 

intelligence networks. The proportion of edges scales with the shade of green in each cell (more edges = darker 

orange).  The denominator of the cells reflects the total number of edges in the respective network, and the numerator 

reflects the number of edges found between a given network pair. The seven functional networks of the Schaefer et 

al. (2018) atlas are listed for both hemispheres along the x- and y-axes. DAN = dorsal attention network; DN = default 

network; ECN = executive control network; LN = limbic network; SMN = sensorimotor network; VN = visual 

network; RH = right hemisphere; LH = left hemisphere; N = 171.   
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attention, and somatomotor networks, with the highest proportion of edges found between the left control 

and right dorsal attention networks (3%).   

We then assessed prediction of Gv (visuospatial intelligence) based on functional connectivity 

patterns during the DT task. Results showed a significant correlation between the model-predicted and 

latent Gv score (r = .30, p < .001). Similar to the Gf and Gc networks, high-degree nodes were found within 

the visual network and executive networks; the Gv network also included several  high-degree nodes within 

the default network (see Table 4). The highest proportion of edges (6%) was between the right executive 

control and right default networks (see Figure 8). The Gv network shared 11% of its functional connections 

with the DT network (common edges = 150); the Gv network included a total of 547 edges, so it shared 

27% of its connections with the DT network. The combined DT-Gv network showed high-degree nodes 

within control, salience/ventral attention, somatomotor, and visual networks, with the highest proportion of 

edges (2%) found between left salience/ventral attention and right executive and right visual networks, 

among others. 

Figure 11. Venn diagrams depicting the number of common and unique edges between divergent thinking and 

intelligence networks. The colored circles represent networks predictive of divergent thinking and intelligence. The 

number of edges in the overlapping circle regions corresponds to the number of edges in the combined networks 

depicted in Figures 9 and 10. Circle size corresponds to the relative number of edges in the network.  
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Finally, we examined prediction of higher-order g (general intelligence) based on functional 

connectivity patterns during the DT task. Results showed a significant correlation between the model-

predicted and latent g score (r = .37, p < .001). The g network included high-degree nodes within control, 

salience/ventral attention, dorsal attention, and visual networks, with the highest proportion of edges (7%) 

found between bilateral salience/ventral attention and control networks, as well as left dorsal attention and 

left executive control networks. The g network shared 27% of its functional connections with the DT 

network (common edges = 377); the g network included a total of 826 edges, so it shared 46% of its 

connections with the DT network. Regarding anatomy, the high-degree nodes of the combined DT-g 

network were mostly concentrated within the control network, as well as visual, dorsal attention, and 

salience/ventral attention networks (see Table 5). The highest proportion of edges (5%) was found between 

left salience/ventral attention and right dorsal attention networks; the combined network also showed 

common connections between salience/ventral attention and executive control networks (see Figure 10). 

General intelligence and divergent thinking thus showed overlapping functional connections between brain 

networks associated with the executive control of attention and cognition.  

Discussion 

 The present research combined brain-based prediction and psychometric tools to examine the 

extent to which creative cognition and intelligence overlap in brain and behavior. At the behavioral level, 

we found that four intelligence facets (Gc, Gf, Gr, and Gv) positively correlated with divergent thinking, 

with effect sizes ranging from moderate to large. Modeling these intelligence facets as indicators of a 

higher-order factor revealed a large latent correlation between g and divergent thinking (r = .63). At the 

neural level, connectome-based predictive models built on fMRI data during a divergent thinking task 

showed reliable prediction of both divergent thinking and intelligence facets, revealing considerable overlap 

in the functional connectivity patterns that predict both cognitive abilities, predominantly within executive 

control, salience/ventral attention, and visual networks. Taken together, these results provide new insight 

into the nature of the creative cognition-intelligence relationship by mapping behavioral associations to 

functional brain network connections.   
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 A latent variable model yielded positive correlations between divergent thinking and controlled 

semantic retrieval (Gr), higher-order reasoning (Gf), vocabulary knowledge (Gc), and mental manipulation 

of spatial stimuli (Gv), with GC showing the largest correlation with divergent thinking. Gc involves 

utilizing and manipulating acquired knowledge during the problem-solving process (Cattell, 1963). Thus, 

our extension of work linking Gc and creativity (Cho et al., 2010) is perhaps not surprising, as Gc may 

permit access to a more extensive information “toolbox” stored in memory. Solving an ill-defined divergent 

thinking task requires people to employ various mental strategies that rely on broad lexical access, 

activation of previously acquired declarative (knowing “what”) and procedural (knowing “how”) 

knowledge and relevant experiences (Hunt, 2000). When presented with an unfamiliar and open-ended task, 

one’s depth and breadth of knowledge may be fundamental to producing novel solutions that go beyond the 

known meaning of the target concept (Basadeur & Gelade, 2005). In our study, participants were required 

to generate creative uses for common objects (Guilford, 1967). Here, Gc may facilitate divergent ideation 

by allowing people to consider objects relative to past experiences, reflect upon knowledge schemas, and 

evaluate the appropriateness of accessible information (Amabile, 2018).  

We also observed positive correlations between the intelligence facets Gr, Gf, Gv, and divergent 

thinking. Gr involves accessing facts and conceptual knowledge from long-term memory (Silvia et al., 

2013). Previous work has suggested that such controlled semantic retrieval may facilitate an associative 

process in which novel ideas are generated by combining distantly-related concepts in semantic memory 

(Abraham, 2014; Abraham & Bubic, 2015; Beaty et al., 2020; Bowden & Jung-Beeman, 1998; Green, 2016; 

Mednick, 1962). It is possible that the correlation between Gr and divergent thinking in our sample reflects 

an ability to conceptually expand the meaning of AUT prompts, such that unexpected, original, and task-

appropriate concepts are accessed as viable response candidates during divergent thinking (Abraham, 

2014). Given Gr’s role in controlled semantic retrieval, Gr could also support divergent thinking by 

generating and executing complex retrieval cues to strategically guide the search process during divergent 

thinking (cf., Silvia et al., 2013).   
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Gf involves pattern and rule discernment as well as the controlled selection and implementation of 

strategies to solve novel tasks (McGrew, 2009; Silvia, 2008). Evidence for the role of Gf in creative 

cognition indicates that higher-order reasoning may support an ability to flexibly shift from less effective 

to more effective problem-solving approaches (Nusbaum & Silvia, 2011; Silvia, 2015). Because divergent 

thinking is an effortful cognitive process that requires executive inhibition of standard responses to produce 

unconventional responses (Silvia & Beaty, 2012), the Gf-creativity association observed in the present 

experiment adds to existing research which suggests that executive control and higher-order reasoning 

support the quality of divergent ideas (Benedek et al. 2012). Gv involves mentally manipulating three-

dimensional stimuli. Although less explored in the creativity literature, visuospatial intelligence may be 

particularly important for problem-solving during divergent tasks that require imaginal motor planning 

(Aziz-Zadeh, Liew, & Dandekar, 2013). The AUT requires that individuals generate uses for common 

objects; therefore, idea generation may integrate mental simulations of possible utility functions. Gv may 

initially support mental simulation of common uses to scaffold imagined novel uses, such as envisioning 

ways to tie rope to make a handle for a drawer, or to fashion a portable wrestling ring. Continued creativity 

research should further explore individual differences in Gv and task conditions that integrate visuospatial 

elements (e.g., drawing), which may offer additional interpretations of the Gv-divergent thinking link.  

 Regarding general intelligence, a second latent variable model showed a large correlation between 

g and divergent thinking. Specifically, when g was modeled as a higher-order factor indicated by the four 

lower-order facets, over 40% of the variance in divergent thinking ability could be explained. Notably, the 

large effect sizes reported here are broadly consistent with those reported elsewhere using latent variable 

models, but they are notably larger than earlier work reporting zero-order correlations (e.g., Kim, 2005). 

We focused on subjective assessments of the creative quality of divergent thinking responses (Benedek, 

Mühlmann, Jauk, & Neubauer, 2013; Silvia et al., 2008), which typically yield stronger relationships with 

intelligence than fluency- and uniqueness-based metrics (Silvia, 2015). We also used two modes of 

divergent thinking assessment—many brief trials in the scanner coupled with conventional computer-based 

trials—providing a comprehensive measurement approach that extends past behavioral work using a small 
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number of trials and cues to assess divergent thinking (cf. Barbot, 2018). Taken together, the current study 

suggests that the intelligence-creative cognition relationship is robust when latent variable models are 

combined with multiple assessments of each cognitive ability.    

  Our study additionally provides a first look at how intelligence and creative cognition overlap 

within the brain’s functional connectome. Using a data-driven prediction approach, CPM, we compared 

functional connectivity that predicted divergent thinking and intelligence facets. By overlaying these 

functional connectivity maps, we identified which connections contributed to the prediction of both 

cognitive abilities. Extending our previous CPM study (Beaty et al., 2018) with a different functional atlas, 

we found that divergent thinking ability could be predicted based on the strength of functional connectivity 

between executive, salience, and default network nodes (as well as other networks), despite some 

differences between this analysis and our prior study (i.e., brain atlas and preprocessing pipeline).The 

anatomical location and concentration of predictive nodes and connections differed to some extent from 

our prior study (Beaty et al., 2018), consistent with expected variation from employing a new brain atlas 

and preprocessing pipeline (i.e., fMRIprep). Extending our previous work, we found that individual 

intelligence facets could be predicted based on patterns of functional connectivity during divergent 

thinking, and these patterns shared considerable (but variable) overlap with those associated with divergent 

thinking performance. As expected, the magnitude of the CPM effect size was largest for divergent 

thinking, with smaller but moderate effects for the intelligence variables. Notably, our previous study found 

that functional connectivity strength within a “high-creative” network did not correlate with fluid 

intelligence in one of the external validation analyses using resting-state fMRI data, providing evidence for 

the specificity of this network in predicting divergent thinking with task-based fMRI data. The current study 

extends our previous work by modeling separate predictive brain networks for divergent thinking and 

several facets of intelligence (along with a general factor), quantifying the degree of overlap in the 

predictive features (connections) within these networks.   

The present findings are consistent with recently hypothesized distinctions between the definitions 

of intelligence and creativity (Jung & Chohan, 2019). On this view, intelligence is defined as a function of 
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cognitive processes that support rapid and accurate problem-solving, whereas creativity is defined as a 

function of cognitive processes that support the combination of novelty and utility. Although there are 

obvious differences in the operationalization of these constructs, evidence points to the confirmation of 

individual differences in intelligence and creativity to two adaptive behavioral axes: exploratory (e.g., rapid 

and novel) and restraint (e.g., accurate and useful; Jung & Chohan, 2019). Notably, aspects of intelligence 

and creativity are captured by both axes, as intelligence is characterized by rapid (exploratory) and accurate 

(restraint) thought, whereas creativity is characterized by novel (exploratory) and useful (restraint) thought. 

Furthermore, these complementary axes correspond to large-scale brain networks—the executive network 

and default network, respectively (Basten, Stelzel, & Fiebach, 2013; Beaty et al., 2016; Jung et al., 2013; 

Jung & Chohan, 2019)—which is consistent with our findings that both networks are relevant to abilities 

characteristic of intelligence and creative cognition. 

Comparing the lower-order/specific intelligence facet maps with the divergent thinking map 

revealed high-degree nodes within executive control, salience/ventral attention, and visual networks. The 

executive control network plays a key role in the manipulation of information in working memory, 

inhibition of prepotent responses, and maintenance of higher-order goals during task execution (Niendam 

et al., 2012). This network has been consistently implicated in studies of creativity and intelligence 

(Vartanian, 2018). The salience/ventral attention network is associated with the detection of behaviorally-

relevant information—both within the environment and internally—and it plays a central role in switching 

between the default and executive control networks (Uddin, 2015). In the context of creative cognition, the 

salience network may facilitate dynamic switching between idea generation (default network) and idea 

evaluation (control network; Beaty et al., 2016, 2019). Thus, stronger connections between salience and 

control networks found in the current study may reflect a greater capacity of more intelligent participants 

to engage one component of this switching mechanism, potentially in the service of idea evaluation or other 

control-relevant processes relevant for creative cognition (e.g., switching or inhibition).    

Interestingly, the CPM also consistently implicated the visual network. Although the role of the 

visual network is less well-documented in creativity neuroscience, in light of related past work, we suspect 
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that the visual network may play a role in mental imagery processes. The visual network shows consistent 

activation during tasks that involve “mental time travel”—facilitating episodic recall in service of 

prospective, episodic future-thinking (Benedek et al., 2014b)—which may foster imagining possible action-

based simulations of alternative uses for a stimulus. Future work should examine whether visual cortices 

contribute to performance on other divergent thinking tasks, such as figural or musical creative ability, 

which allow physical modification of the task space (e.g., via assembling notes or sketching ideas). On the 

one hand, such physical manipulation of task stimuli that could attenuate reliance on the visual/imagery 

system for ideation by incorporating spatial and physical modalities; on the other hand, it could amplify 

reliance on the visual system by increasing the saliency and perceived applicability of imagined episodes, 

as they are actively explored in real time.  

Across all comparisons of lower-order facets and divergent thinking, the prefrontal cortex of the 

control network consistently emerged as one of the most predictive brain regions. This observation is 

consistent with previous research implicating the lateral prefrontal cortex (DLPFC) in intelligence and 

creative cognition (Barbey et al., 2013; Chen et al., 2016; Jung et al., 2010), likely due to their common 

reliance on cognitive control (Benedek et al., 2014). The control network may play an important role in 

creative idea evaluation (Kleinmintz et al., 2019), particularly at later stages of idea production (Beaty et 

al., 2015), by determining whether candidate ideas fit the constraints of creative task demands. Considered 

in the context of the current findings, the common prediction of intelligence facets (Gc, Gf, Gr, and Gv) 

and divergent thinking within the control network may reflect more efficient deployment of goal-directed 

and strategic cognitive processes during creative task performance.  

Regarding general intelligence and creative cognition, CPM showed high-degree nodes consistent 

with lower-order models, predominantly within executive control, salience/ventral attention, and visual 

networks. Interestingly, the general intelligence network shared nearly half of its functional connections 

with the divergent thinking network (i.e., 46%), in line with the large behavioral effect of g on divergent 

thinking performance. The highest degree nodes in this combined network were located with bilateral visual 

cortex and lateral prefrontal regions of the control network. Similar to the lower-order intelligence CPM, 
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the combined DT-g network included functional connections linking control network with salience/ventral 

attention networks, as well as dorsal attention and visual networks. This finding extends previous research 

reporting functional connectivity between executive and salience networks, in turn suggesting that these 

connections may be stronger in more intelligent people. Intelligence may therefore contribute to creative 

cognition by engaging executive control processes to strategically search memory, inhibit common 

response tendencies, combine concepts, manipulate mental images, and evaluate the utility of candidate 

ideas (Beaty et al., 2016). Taken together, the present work provides clarity on the complex relationship 

between intelligence and creativity by linking specific cognitive abilities to specific functional connections 

that predict a person’s ability to think creatively. 

Summary, Limitations, and Future Directions 

Our findings contribute to the growing literature highlighting the role of intelligence to creative 

cognition (Benedek et al., 2018; Christensen et al., 2018; Forthmann et al., 2019; Karwowski et al., 2016; 

Silvia, 2015). We found a strong correlation between g and divergent thinking, as well moderate to large 

correlations between lower-order facets and divergent thinking, pointing to shared common processes 

underlying these cognitive abilities. Looking ahead, these findings could be extended by examining 

simultaneous effects of lower-order facets and higher-order g using bifactor modeling. Past research has 

reported joint effects of lower-order facets and g on related creative thinking abilities, such as humor 

production (Christensen et al., 2018). The sample size of the current study did not permit successful bifactor 

modeling (fit indices were inadequate), but we encourage future work to leverage bifactor models to this 

end. Further research is also needed to delineate whether the effects of lower-order facets and higher-order 

g extend beyond laboratory-based assessments of divergent thinking measures to contribute to a broader 

range of creative domains, including musical and artistic improvisations or creative writing ability, for 

instance.  

Extensions of this work should also aim to investigate a more heterogenous sample, as 69% of our 

participants were female, and some previous work has demonstrated that the brain correlates of both 

intelligence and creativity relates to sex (Abraham, 2016; Deary, Pink, & Johnson, 2010; Ryman et al., 
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2014). Notably, however, sex differences are not ubiquitous in the literature in either domain (see Baer & 

Kaufman, 2008; Colom, 2000; Halpern & LaMay, 2000; Miller & Halpern, 2014; Pagnani, 2011), and it is 

important to highlight that sex differences in cognitive abilities may emerge as a function of strategies 

employed during the ideational process, as opposed to reflecting differential ability (Abraham, 2014, 2016; 

Deary, Pink, & Johnson, 2010). For example, Abraham and colleagues (2014) observed greater recruitment 

of brain regions associated with outcome-focused decision making, semantic memory, and rule learning 

during divergent thinking assessed via the AUT in men, whereas greater neural activation was observed in 

regions associated with language comprehension and perception of social cues among women. Notably, 

there were no sex differences in behavioral originality performance, which provides support for the 

possibility that sex differences in brain activity may predominantly reflect the adoption of different 

strategies to achieve similar outcomes; however, this topic warrants further exploration. 

In addition, a broader issue in the field of cognitive neuroscience lies in the inherently complex 

mapping of cognitive processes onto brain regions, which often fails to reflect a one-to-one mapping 

(Krakauer, 2017). Although two cognitive processes may share the same neural mechanisms, these 

processes may actually be distinct, with different computations performed within the same brain region 

(Katz, 2016). Conversely, two cognitive processes may engage different neural mechanisms and yet be very 

similar, which indicates similar computations performed in different brain regions (Marder & Goaillard, 

2006). Given this understanding, the question of whether intelligence and creative cognition hinge on 

similar cognitive processes is far from resolved, and future behavioral and neuroscientific research is 

warranted to disentangle interpretations of spatial overlap, which could further inform psychological 

theories of intelligence and creativity.  

Our findings indicate that similar functional brain networks support creative cognition and 

intelligence. We used functional imaging data acquired during divergent thinking to identify functional 

connections that contribute to the prediction of both cognitive abilities. This approach extends recent 

applications of brain-based prediction approaches (e.g., CPM) by mapping cognitive factors to specific 

brain regions and connections within complex patterns of functional connectivity. Although task-based 
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fMRI data improve prediction of human cognitive abilities compared to task-free data (Greene et al., 2018), 

it is worth noting that our connectome-based models were built only on divergent thinking data but 

predicted both divergent thinking and intelligence. Thus, extending our work, future research could 

combine functional connectivity data obtained from both cognitive domains to directly compare their 

overlap. Such approaches can provide increasingly higher resolution on the cognitive and neural 

mechanisms of complex human abilities like intelligence and creative cognition.  
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Table 1 

Descriptive statistics for the intelligence tasks 

 

Notes. Gc = crystallized intelligence; Gf = fluid intelligence; Gr = broad retrieval ability; Gv = 

visuospatial intelligence.  

 

 

 

 

 

 

 

 

 

 

Task M SD R (min-

max) 

Skew Kurtosis 

Gc_advanced 

vocabulary 

 

9.02 2.86 1-17 -0.18 0.19 

Gc_extended range 

vocabulary 

 

12.12 3.37 3-20 -0.06 -0.20 

Gf_series 

completion 

 

7.97 1.63 3-11 -0.57 0.31 

Gf_letter sets 

 

8.93 2.21 1-14 -0.29 0.44 

Gf_number series  

 

9.55 2.69 3-15 -0.05 -0.66 

Gr_animals 

 

19.40 4.28 6-34 0.01 0.15 

Gr_good 

 

7.45 2.69 1-16 0.56 0.53 

Gr_hot 

 

5.82 2.34 2-14 0.80 0.67 

Gr_occupation 

 

14.35 3.36 3-23 -0.23 0.40 

Gr_vegetable 

 

15.67 3.66 9-25 0.34 0.50 

Gv_block rotations 

 

3.81 2.17 0-10 0.49 -0.39 

Gv_cube 

comparisons 

 

13.15 3.70 3-20 -0.47 -0.32 

Gv_paper folding 5.30 2.19 1-10 -0.05 -0.75 



 

 58 

 

 
Table 2 

 

Descriptive statistics for the divergent thinking tasks 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Notes. dt1 = divergent thinking, box; dt2 = divergent thinking, rope; dt_mri = divergent thinking, MRI; 

r1-r4 = rater 1-rater 4.  

 

Task M SD R (min-

max) 

Skew Kurtosis 

DT_mri_r1 

 

2.29 0.39 1.22-3.78 0.44 0.79 

DT_mri_r2 

 

1.46 0.24 1-2.37 1.04 1.40 

DT_mri_r3 

 

1.91 0.29 1-2.70 0.03 -0.16 

DT_mri_r4 

 

1.76 0.38 1-3.36 1.08 2.17 

DT1_r1 

 

1.90 0.47 1-3.25 0.59 0.23 

DT1 _r2 

 

1.45 0.33 1-2.67 0.95 0.55 

DT1_r3 

 

1.59 0.37 1-3.33 1.19 3.12 

DT1_r4 

 

1.39 0.42 1-3 1.43 2.02 

DT2_r1 

 

1.75 0.54 1-3.67 1.10 1.03 

DT2_r2 

 

1.50 0.41 1-3.5 1.77 4.82 

DT2_r3 

 

1.69 0.44 1-3.5 1.05 1.48 

DT2_r4 

 

1.34 0.43 1-4 2.55 9.44 
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Table 3 

 

Correlations between latent intelligence facets and divergent thinking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes. DT = divergent thinking creativity; Gc = crystallized intelligence; Gf = fluid intelligence; Gr = 

broad retrieval ability; Gv = visuospatial intelligence. N = 186.  

 DT  Gc Gf Gr Gv 

DT  1     

Gc .54 [.37, .71] 1    

Gf .39 [.20, .57] .42 [.22, .63] 1   

Gr .32 [.14, .50] .51 [.33, .68] .48 [.30, .65] 1  

Gv .41 [.24, .59] .40 [.21, .59] .59 [.42, .76] .24 [.04, .43] 1 



 

 60 

Table 4  

 

Top 10 high-degree nodes within individual divergent thinking and intelligence CPM networks 

 

DT Network  

# K Network L/R Lobe Schaefer Atlas Node # 

1 52 Control L Prefrontal 105 

2 35 Visual L Occipital 15 

3 34 Visual R Occipital 164 

4 30 Ventral Attention R Prefrontal 228 

5 28 Default L Prefrontal 133 

6 24 Control R Prefrontal 256 

7 24 Somatomotor R Frontal 193 

8 24 Control L Prefrontal 107 

9 23 Control R Prefrontal 259 

10 21 Ventral Attention L Frontal 79 

Gc Network  

1 37 Visual L Occipital 22 

2 26 Visual L Occipital 15 

3 21 Control R Prefrontal 256 

4 18 Visual R Occipital 172 

5 15 Ventral Attention R Parietal 222 

6 14 Ventral Attention L Frontal 79 

7 14 Somatomotor L Temporal 25 

8 12  Visual  R Occipital 171 

9 12 Default L Temporal 116 

10 12 Somatomotor L Frontal 44 

Gf Network  

1 39 Visual R Occipital 164 

2 37 Visual L Occipital 15 

3 33 Visual  L Occipital 160 

4 31 Visual R Occipital 11 

5 24 Default L Temporal 119 

6 23 Dorsal Attention R Parietal 208 

7 22 Visual R Occipital  172 

8 20 Control R Prefrontal 256 

9 17 Control R Prefrontal  259 

10 17 Ventral Attention L Prefrontal 78 

Gr Network 

1 23 Control L Limbic 111 

2 17 Ventral Attention R Limbic 233 

4 16 Default L Prefrontal 138 

3 15 Somatomotor R Frontal 193 

5 11 Control R Parietal 266 

6 11 Default L Prefrontal 128 

7 8 Dorsal Attention L  Temporal 56 

8 7 Visual R Occipital 154 

9 7 Visual R Occipital 153 

10 7 Limbic L Temporal 93 
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Gv Network  

1 25 Visual R Occipital  164 

2 22 Control L Limbic 110 

3 21 Default L Parietal 147 

4 20 Control R Prefrontal  259 

5 16 Default R Prefrontal 292 

6 16 Visual R Visual 172 

7 16 Default L Limbic 149 

8 14 Default R Prefrontal 284 

9 14 Control R Prefrontal 270 

10 14 Somatomotor R Parietal  197 

G Network 

1 40 Visual L Occipital 15 

2 36 Visual L Occipital 22 

3 32 Visual R Occipital 164 

4 30 Control R Prefrontal 256 

5 24 Visual R Occipital 172 

6 24 Ventral Attention L Frontal 79 

7 23 Dorsal Attention R Parietal 205 

8 22 Ventral Attention L Prefrontal 78 

9 21 Control L Limbic 110 

10 20 Ventral Attention R Limbic 233 

 

Notes. The Schaefer atlas (300 nodes, 7 networks) was used to construct functional networks (Schaefer et 

al., 2018). DT = divergent thinking creativity; Gc = crystallized intelligence; Gf = fluid intelligence; Gr = 

broad retrieval ability; Gv = visuospatial intelligence. K = degree; L = left; R = right. 
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Table 5  

 

Top-10 high-degree nodes within combined divergent thinking and intelligence CPM networks 

 

DT-Gc Network  

# K Network L/R Lobe Schaefer Atlas Node # 

1 20 Visual  L Occipital 15 

2 20 Visual R Occipital 164 

3 17 Control R Prefrontal 256 

4 17 Ventral Attention L Frontal 79 

5 15 Control L Prefrontal 105 

6 13 Control R Prefrontal 259 

7 13 Ventral Attention L Prefrontal 197 

8 13 Visual L Occipital 22 

9 12 Dorsal Attention R Parietal 205 

10 11 Somatomotor L Temporal 25 

DT-Gf Network  

1 18 Visual R Occipital 164 

2 15 Visual L Occipital 15 

3 11 Control R Prefrontal 256 

4 9 Control R Prefrontal 259 

5 9 Ventral Attention L Frontal 79 

6 7 Ventral Attention R Parietal 235 

7 7 Dorsal Attention R Parietal 208 

8 7 Visual R Occipital 172 

9 7 Ventral Attention L Prefrontal 81 

10 7 Ventral Attention L Prefrontal 78 

Dt-Gr Network 

1 10 Control L Limbic 111 

2 5 Somatomotor R Frontal 193 

3 3 Ventral Attention R Limbic 234 

4 3 Visual R Occipital 153 

5 3 Default L Prefrontal 137 

6 3 Control L Prefrontal 105 

7 2 Visual R Occipital 168 

8 2 Default L Prefrontal 133 

9 2 Ventral Attention L Prefrontal 76 

10 1 Default R Limbic 296 

DT-Gv Network  

1 12 Visual R Occipital 164 

2 11 Somatomotor R Parietal 197 

3 11 Visual L Occipital 15 

4 10 Control R Prefrontal 259 

5 8 Visual R Occipital 172 

6 7 Ventral Attention R Parietal 235 

7 7 Somatomotor L Temporal 25 

8 6 Control R Prefrontal 256 

9 6 Ventral Attention L Prefrontal 81 

10 5 Control R Prefrontal 270 
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DT-G Network  

1 1 Visual R Occipital 164 

2 2 Visual L Occipital 15 

3 3 Control R Prefrontal 256 

4 4 Ventral Attention L Parietal 79 

5 5 Control L Prefrontal 105 

6 6 Control R Prefrontal 259 

7 7 Somatomotor R Parietal 197 

8 8 Visual L Occipital 22 

9 9 Dorsal Attention R Parietal 205 

10 10 Somatomotor R Frontal 193 

Notes. The Schaefer atlas (300 nodes, 7 networks) was used to construct functional networks (Schaefer et 

al., 2018). DT = divergent thinking creativity; Gc = crystallized intelligence; Gf = fluid intelligence; Gr = 

broad retrieval ability; Gv = visuospatial intelligence. K = degree; L = left; R = right. 
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Supplemental Table 1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1. dt_mri_r1 1                         
2. dt_mri_r2 0.82 1                        
3. dt_mri_r3 0.87 0.77 1                       
4. dt_mri_r4 0.84 0.81 0.79 1                      
5. dt1_r1 0.51 0.44 0.40 0.44 1                     
6. dt1_r2 0.34 0.25 0.25 0.33 0.72 1                    
7. dt1_r3 0.46 0.41 0.39 0.40 0.67 0.57 1                   
8. dt1_r4 0.41 0.36 0.34 0.37 0.77 0.70 0.66 1                  
9. dt2_r1 0.43 0.31 0.41 0.45 0.45 0.38 0.43 0.41 1                 
10. dt2_r2 0.34 0.20 0.32 0.32 0.42 0.38 0.44 0.47 0.78 1                
11. dt2_r3 0.46 0.32 0.43 0.46 0.48 0.44 0.55 0.49 0.87 0.79 1               
12. dt2_r4 0.28 0.20 0.27 0.33 0.35 0.39 0.49 0.47 0.73 0.67 0.76 1              
13. gc_adv 0.25 0.20 0.20 0.27 0.30 0.32 0.28 0.25 0.27 0.20 0.18 0.21 1             
14. gc_ex 0.31 0.27 0.27 0.27 0.25 0.25 0.24 0.18 0.25 0.21 0.22 0.16 0.49 1            
15. gf_cfiq 0.07 0.10 0.21 0.07 0.17 0.17 0.14 0.08 0.11 0.04 0.08 0.08 0.09 0.10 1           
16. gf_letters 0.14 0.15 0.21 0.11 0.24 0.18 0.15 0.16 0.17 0.06 0.08 0.08 0.07 0.20 0.27 1          
17. gf_numbers 0.20 0.20 0.14 0.20 0.19 0.17 0.24 0.12 0.20 0.16 0.20 0.17 0.14 0.21 0.30 0.38 1         
18. gr_animals 0.14 0.12 0.21 0.19 0.13 0.07 0.16 0.10 0.11 0.07 0.12 0.07 0.18 0.07 0.08 0.09 0.17 1        
19. gr_good 0.14 0.13 0.19 0.14 0.10 0.05 0.13 0.04 0.05 0.07 0.07 -0.07 0.09 0.18 0.06 0.08 -0.08 0.26 1       
20. gr_hot 0.07 0.13 0.19 0.17 0.10 0.17 0.13 0.12 0.23 0.15 0.24 0.14 0.06 0.22 0.16 0.12 0.13 0.23 0.33 1      
21. gr_jobs 0.25 0.22 0.23 0.26 0.17 0.19 0.22 0.15 0.14 0.14 0.20 0.16 0.16 0.16 0.03 0.09 0.26 0.46 0.23 0.19 1     
22. gr_veg 0.22 0.25 0.28 0.23 0.20 0.15 0.19 0.12 0.25 0.18 0.29 0.14 0.25 0.32 0.13 0.16 0.16 0.49 0.35 0.31 0.46 1    
23. gv_blocks 0.18 0.26 0.18 0.28 0.23 0.16 0.14 0.12 0.34 0.23 0.26 0.18 0.21 0.33 0.26 0.33 0.32 0.12 0.00 0.00 0.02 0.10 1   
24. gv_cubes 0.21 0.21 0.18 0.17 0.20 0.12 0.14 0.15 0.14 0.16 0.17 0.16 0.05 0.16 0.06 0.30 0.27 0.15 0.08 0.02 0.10 0.20 0.33 1  

25. gv_paper 0.20 0.22 0.23 0.24 0.30 0.17 0.15 0.17 0.21 0.19 0.19 0.13 0.13 0.30 0.15 0.10 0.09 0.10 0.09 0.04 -0.04 0.21 0.55 0.29 1 

Notes. Pearson correlations beween all observed variables. dt1 = divergent thinking, box; dt2 = divergent thinking, rope; dt_mri = divergent thinking, MRI; r1 

= rater 1; gc_adv = crystallized intelligence, advanced vocabulary; gc_ext = crystallized intelligence, extended range; gf_cfiq = fluid intelligence, Cattell Series 

Completion; gf_lets = fluid intelligence, letter sets; gf_nums = fluid intelligence, number series; gr_ani = broad retrieval ability, animal category fluency; gr_good 

= broad retrieval ability, synonyms for ‘good’; gr_jobs = broad retrieval ability, occupations category;  gr_hot = broad retrieval ability, synonyms for ‘hot; gr_veg 

= broad retrieval ability, fruits and vegetables category; gv_block = visuospatial intelligence, block rotation; gv_cubes = visuospatial intelligence, cube comparison; 

gv_paper = visuospatial intelligence, paper folding.   

 


