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A B S T R A C T

High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, in-
cluding cognitive control processes. Recent neurocognitive research on these constructs highlight the importance
of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such
a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control
contributes to creativity and intelligence? To address this question, we apply a computational network control
theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample
of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and
intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which
mathematically models patterns of inter-region activity propagated along the structure of an underlying net-
work. The strength of this approach is its ability to characterize the potential role of each brain region in
regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node
dynamics. We find that intelligence is related to the ability to “drive” the brain system into easy to reach neural
states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also
find that creativity is related to the ability to “drive” the brain system into difficult to reach states by the right
dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas.
Furthermore, we found that different facets of creativity—fluency, flexibility, and originality—relate to gen-
erally similar but not identical network controllability processes. We relate our findings to general theories on
intelligence and creativity.

1. Introduction

High-level cognition entails complex and multiple processes, in-
cluding cognitive control processes. For example, current theories on
the creative process view it as a multistage process, involving dynamic
interactions between bottom-up, automatic processes involved during
idea generation; and top-down, executive control processes mainly in-
volved during idea evaluation (Barr et al., 2014; Beaty et al., 2016;
Chrysikou, 2018; Sowden et al., 2014). These theories attribute a key
role to cognitive control processes in guiding creative novelty seeking
and response retrieval, selection, and evaluation (Chrysikou, 2018).

Similarly, the neural processes related to reasoning and intelligence
demand cognitive control processes, required for fluent manipulation of
complex information (Hearne et al., 2015, 2016; Jung and Haier,
2007). However, the exact nature of the cognitive control required in
such high-level cognitive processes are still mostly unknown and de-
bated. Here, we apply a state-of-the-art computational approach—net-
work control theory—to quantitatively examine how different control
strategies in specific brain regions relate to creativity and intelligence.
Such a comparison can further elucidate the differences between these
two high-level, cognitive constructs.

In the past decade, there has been a large increase in neurocognitive
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research on creativity, attempting to identify the main brain regions
that contribute to creativity (Dietrich and Kanso, 2010; Gonen-Yaacovi
et al., 2013; Jung et al., 2013; Shen et al., 2017; Wu et al., 2015; Yoruk
and Runco, 2014). These efforts have related the generation process in
creativity to the Default Mode Network (DMN) and the evaluation
process in creativity to the Executive Control Network (ECN; Beaty
et al., 2016). The DMN is a set of midline and inferior parietal regions
that activate in the absence of most external task demands (Andrews-
Hanna et al., 2014). The DMN is associated with cognitive processes
that require internally-directed or self-generated thought, including
mind-wandering, future thinking, semantic memory, and mental si-
mulation (Andrews-Hanna et al., 2014; Zabelina and Andrews-Hanna,
2016). The ECN is a set of prefrontal and posterior parietal regions that
are engaged during cognitive tasks that require externally-directed at-
tention, such as working memory, relational integration, response in-
hibition, and task-set switching (Zabelina and Andrews-Hanna, 2016).
Recent studies have found that ECN and DMN networks cooperate in
tasks that require evaluation of internal information, such as auto-
biographical future memory planning, emotion regulation, and mind
wandering (Christoff et al., 2009; Gerlach et al., 2014; Ochsner et al.,
2012; Spreng et al., 2014).

A growing number of studies relate the creative process to dynamic
interactions between these two systems (Beaty et al., 2015, 2016; Liu
et al., 2015; Pinho et al., 2014). For example, Beaty et al. (2015) con-
ducted a temporal functional connectivity analysis when participants
either generated alternative uses or simple characteristics for common
objects. The authors show DMN and ECN cooperation at later stages of
the creative task, which they interpret as the ECN executing evaluation
processes on ideas generated by the DMN during earlier stages of the
task (Beaty et al., 2015). Such a dynamic role for the ECN is consistent
with a theory on the role of the prefrontal cortex as a filtering me-
chanism, contingent on task demands and context (Chrysikou et al.,
2014). According to this theory, cognitive control, as mediated by the
prefrontal cortex, is critical to performance on tasks that rely on top-
down, rule-based processes (such as idea evaluation), and can constrain
performance in tasks that rely on bottom-up, spontaneous processes
(such as idea generation; Chrysikou et al., 2014).

Recent neurocognitive theories also relate intelligence to similar
brain networks and dynamics observed in creativity research (Hearne
et al., 2016; Jung and Haier, 2007; Pineda-Pardo et al., 2016). The
dominant theory on the neural processes involved in intelligence has
implicated frontal and parietal activation in relation to individual dif-
ferences in intelligence, theory known as the Parieto-Frontal Integra-
tion Theory of intelligence (P-FIT; Jung and Haier, 2007). Hearne et al.
(2016) conducted a resting state functional connectivity analysis to
examine the P-FIT theory and how it relates to interactions between
different neural system networks. Surprisingly, the authors found that
greater connectivity between ECN (overlapping with the P-FIT theory)
and DMN was associated with higher intelligence scores. Such an in-
tegration was also shown in a task related functional imaging study,
which demonstrated how task complexity in the Wason sorting task led
to higher connectivity between ECN and DMN regions (Hearne et al.,
2015). Recently, Santarnecchi et al. (2017) conducted a meta-analysis
to examine the brain regions and networks related to fluid intelligence
(Gf), the ability to apply a variety of mental operations to solve novel
problems (McGrew, 2005). This analysis highlighted the interaction of
attention, salience, and cognitive control networks in Gf (Santarnecchi
et al., 2017). Specifically, the authors argue that individual differences
in Gf are attributed to the interactions between the ventral (stimulus
driven) attention network and the dorsal (goal driven) attention net-
work (Corbetta et al., 2008). Finally, the authors found that increasing
task difficulty recruited left prefrontal cortex areas (Santarnecchi et al.,
2017).

The apparent parallels in the neurocognitive mechanisms sup-
porting intelligence and creativity, along with several recent studies
linking these constructs at the behavioral level (Beaty et al., 2014;

Benedek et al., 2014a, 2014b, 2017; Kenett et al., 2016; Silvia, 2015),
raises interesting questions about how intelligence and creativity en-
gage cognitive control processes in the brain. Importantly, these studies
argue for an interaction between the ECN and DMN, and that the ECN
exerts cognitive control mechanisms that are crucial for reasoning and
creativity. However, these studies do not account for the specific net-
work control mechanisms exerted in these processes. Furthermore, they
do not examine the differences in the dynamics engaged by such control
processes related to creativity or intelligence. Here we present an ap-
plication of a computational network neuroscience method that is based
on white-matter connectivity networks that may be applied to examine
theoretical control processes related to different high-level cognitive
processes.

Currently, the majority of the research on the neurocognitive pro-
cesses of high-level cognition, such as creativity and intelligence, is
conducted via functional MRI (both rest and task related; Basten et al.,
2015; Beaty et al., 2016; Deary et al., 2010), which has well-known
limitations in its range of sensitivity and specificity in measuring neural
activity. Functional MRI is well suited in examine state-level variability
across participants, given that rest and task functional activity related
patterns fluctuate in ways that predict similarly fluctuating cognitive
measures. However, anatomically-based brain network analysis—ana-
lysis incorporating models that support inferences about dyna-
mics—might be better suited for looking at trait level variability across
participants, by measuring stable individual differences in their neu-
roanatomy that might constrain neural and psychological states. Recent
computational studies have begun to demonstrate how functional brain
signals are constrained by anatomical brain connectivity (Goñi et al.,
2014; Gu et al., 2015; Hermundstad et al., 2013; Honey et al., 2009).
Thus, anatomical brain connectivity can contribute to investigating
state-level cognition, and to better understanding functional neural
signals. This is due to the unique information embedded in the anato-
mical network organization that has been demonstrated to organize
much of observable functional activity such as that observed in fMRI
(Hermundstad et al., 2013, 2014; Medaglia et al., 2017 (Nature Human
Behavior paper)). Thus, anatomical connectivity analysis contributes to
neurocognitive research on cognitive phenomena (Sotiropoulos and
Zalesky, 2017).

Only a few studies have examined how white matter structural
connectivity relates to creative ability (Jung et al., 2010, 2013; Ryman
et al., 2014; Takeuchi et al., 2017, 2010, 2011; Wu et al., 2016).
Takeuchi et al. (2010) conducted a diffusion tensor imaging study to
examine the relation between white matter integrity (measured with
fractional anisotropy) and creative ability. The authors show how in-
creased integrity in white-matter anatomical connectivity in several
brain areas, including the bilateral prefrontal cortex and the corpus
callosum, were significantly correlated with creativity. The authors
interpret the significant relation between creativity and white matter
integrity in the frontal lobes via enhanced cognitive control processes,
and the relation with the corpus callosum via more efficient informa-
tion integration across the two hemispheres. A few studies have also
examined how white matter structural connectivity relates to in-
telligence (Bettcher et al., 2016; Haász et al., 2013; Ohtani et al., 2017,
2015; Penke et al., 2012). These studies, while mostly supporting the P-
FIT theory of intelligence, have also found a relation between white
matter integrity in the corpus callosum and intelligence (Bettcher et al.,
2016) or distributed white matter tracts across the brain (Haász et al.,
2013). For example, Haász et al. (2013) examined the relation of white
matter integrity to different components of fluid intelligence. The au-
thors show how higher Gf was related to general higher white matter
integrity across the brain. Thus, individual differences in such high-
level cognitive constructs may be related to variance in whole brain
white matter connectivity, which may facilitate efficient cognitive
control processes. In the current study, we apply computational net-
work control theory (NCT) in relation to individual differences in
creativity and intelligence. This allows us to examine how whole brain
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structural connectivity theoretically “controls” dynamic brain processes
in relation to individual differences in creativity and intelligence and
whether they engage similar control processes.

From an engineering perspective, network control is a process in
which a system is deliberately shifted or guided along a particular
trajectory to support specific goals (Tang and Bassett, 2017). This
guidance is usually theoretically examined by simulating injection of
signals into the system via deliberate perturbations. Recently, network
control theory has been applied to study the dynamics of large-scale
neural systems (Gu et al., 2015; Yan et al., 2017). For example, Yan
et al. (2017) applied NCT to investigate the significance of controll-
ability of specific neurons in C. Elegans on its locomotion behavior.
Importantly, these predictions were empirically examined and verified
by ablating specific neurons identified as significant controllers (Yan
et al., 2017). Thus, this study demonstrates the feasibility of this
computational theoretical approach in examining control strategies and
dynamics in neural systems.

Application of this theory at the human neural level is built on a
mathematical model of brain dynamics in which patterns of inter-re-
gion activity are propagated along the white matter structure of an
underlying network. The strength of this approach is its ability to better
understand the role of each brain region in regulating whole-brain
network function based explicitly on its anatomical fingerprint (Gu
et al., 2015; Tang and Bassett, 2017). Investigating the controllability of
neural dynamics is computationally challenging, as it requires model-
ling non-linear neural dynamics and the neural structural connectivity
that gives rise to such dynamics (Gu et al., 2015). Thus, a common
practice in the application of network control theory is to locally line-
arize models of dynamic processes (Liu et al., 2011). Accordingly, the
application of control theory in neuroscience is built upon anatomical
connectivity networks combined with a simplified, linear model of such
neural dynamics (Gu et al., 2015). This assumption of linear dynamics
is commonly accepted, and is based upon prior models linking anato-
mical brain networks to resting state functional dynamics (Abdelnour
et al., 2014; Bettinardi et al., 2017; Honey et al., 2009, 2010; Muldoon
et al., 2016). These prior studies have demonstrated that a moderate
amount of variance in neural dynamics as measured by fMRI can be
predicted from simplified linear models (Cole et al., 2016; Galán, 2008;
Honey et al., 2009). Recently, Muldoon et al. (2016) examined the ef-
fects of regional brain stimulation on controllability of brain states
using a non-linear computational model. The authors demonstrate that
while the dynamics of their computational model is highly variable
across participants, it is highly reproducible across multiple imaging
scans. Furthermore, the authors applied their non-linear model to va-
lidate controllability measures computed based on the simplified linear
model. Thus, while the forefront of computational neuroscience aims to
develop methods to map the relation between structural and functional
signals (Medaglia et al., 2017 (Nature Human Behavior paper)), con-
trollability measures built on a simplified linear model have proven
their fruitfulness.

Recent applications of NCT to neural systems have mathematically
formulated a set of three controllability metrics that quantify the con-
tributions made by individual brain regions in “driving” the entire brain
network from one state (the magnitude of neurophysiological activity
across brain regions at a single time point) into another: Average,
Modal, and Boundary controllability (Gu et al., 2015; Pasqualetti et al.,
2014). Average controllability quantifies the theoretical extent to which a
specific brain region can easily “drive” the brain into easy to reach
states with little energy. Thus, brain regions with high average con-
trollability can drive the brain into many “easy to reach” states, and
have been observed in DMN regions (Gu et al., 2015; Pasqualetti et al.,
2014). Gu et al. (2015) have argued that if control energy relates to
cognitive effort, and if brain regions relate to cognitive function, than
brain regions with high average controllability are important in al-
lowing the brain to move smoothly between such functions that require
little effort. Modal controllability quantifies the theoretical extent to

which a specific brain region can easily “drive” the brain into states that
require substantial input energy to reach, i.e. those considered to be
“difficult-to-reach” states. Brain region with high modal controllability
have been observed in fronto-parietal regions (Gu et al., 2015).
Boundary controllability quantifies the theoretical extent to which a
specific brain region lies at the “boundary” between network sub-
communities, contributing to the integration or segregation between
them. Brain regions with high boundary controllability have been ob-
served in attention systems (Gu et al., 2015). Collectively, these three
theoretical control roles define different continua in brain networks:
brain regions may vary in their tendency to drive the brain to or away
from specific types of states or into integrated states, and are termed
according to their ability to globally control the entire brain system.
Without the context of behavior and the brain, these are mathematical
abstractions that may hold no behavioral relevance. The extent to
which these controllability roles vary across individuals may be related
to behavioral and cognitive variability, which would establish a link
between network control theoretic analysis and cognition (Medaglia
et al., 2016, 2017; Tang et al., 2017).

A few recent studies have demonstrated the feasibility of applying
network control theory to study cognition. Tang et al. (2017) in-
vestigated whole brain network controllability measures related to ty-
pical neurocognitive development. The authors found that the relative
strength of average controllability of subcortical brain regions pre-
dicted improved cognitive performance as related to development.
Medaglia et al. (2016) demonstrated how modal and boundary con-
trollability related to individual differences in cognitive control. The
authors computed whole-brain modal and boundary controllability,
and related these measures to performance on a variety of tasks that
demand executive control (such as the Stroop task). This study de-
monstrates how these controllability measures for specific brain areas
(such as in frontal control areas) correlate with performance on the
different tasks, and it is the first to ground cognitive control in network
controllability measures. Finally, Medaglia et al. (2017) show how
modal controllability of the left inferior frontal gyrus predicts vulner-
ability to transcranial magnetic brain stimulation on linguistic tasks.
Furthermore, the authors show how such brain stimulation affects the
boundary controllability of the left inferior frontal gyrus. Thus, the
application of NCT in neurocognitive research advances our under-
standing of regions’ theoretical roles in driving activity across the brain
as related to cognitive processes.

In the current study, we apply NCT on white-matter anatomical
connectivity networks in a large sample of participants (N = 416) who
completed a battery of creativity and intelligence tasks. Creativity was
assessed via a battery of divergent thinking tasks (DT), the hallmark
predictor of creative ability characteristics, frequently applied in crea-
tivity research (Baird et al., 2012; Runco and Acar, 2012), and predicts
real-life creative ability (Plucker, 1999). Intelligence was measured by a
battery of Raven's matrices tasks, widely applied in intelligence re-
search (Carpenter et al., 1990). For each participant, we extracted
anatomical connectivity matrices based on diffusion tractography and
compute average, modal, and boundary controllability for brain regions
across the whole brain. We then examined and compared the relation of
each of the controllability measures to creativity and intelligence. Next,
we conducted a similar analysis to different facets of creativity based on
standard measures of DT computed from participants’ performance –
fluency, flexibility, and originality. This analysis allows us to quantify
and compare how specific control strategies in different brain regions
differentiate between intelligence and creativity in general, and be-
tween specific measures of creative ability. More generally, our study
allows us to quantitatively examine theories on the roles of the ECN and
DMN regions in driving brain network dynamics as related to individual
differences in creativity and intelligence. While we are theoretically
motivated to focus on the ECN and DMN, we conduct a whole-brain
analysis to examine differences in controllability across all possible
brain regions. This is motivated by the possibility that different brain
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regions actually regulate such dynamics whereas functional imaging
studies are the consequences of underlying dynamic-driving roles
across the brain.

In line with recent research on the neurocognitive processes related
to intelligence and creativity (Chrysikou, 2018; Santarnecchi et al.,
2017), we predict a significant positive relation between modal con-
trollability, intelligence, and creativity in prefrontal cortex. Intuitively,
individuals that have a prefrontal cortex that is highly specialized to
drive the brain into difficult to reach brain states may have superior
performance on tasks demanding higher cognitive control such as in-
telligence or creativity. Furthermore, consistent with theories on the
significance of ECN and DMN interaction related to both creativity and
intelligence (Beaty et al., 2016; Hearne et al., 2016), we predict a sig-
nificant relation between boundary controllability, creativity, and in-
telligence in brain regions that have been implicated in coupling be-
tween ECN and DMN systems, such as the inferior frontal gyrus
(Sebastian et al., 2016) or the insula (Menon, 2011). We expect that
such a relation will highlight the coupling relation previously found in
DMN and ECN networks in the creative process (Beaty et al., 2015) and
in reasoning (Hearne et al., 2015).

2. Methods

2.1. Participants

The sample was collected as part of a large research project ex-
ploring the associations among individual differences in brain structure
and function, creativity, and mental health (Chen et al., 2016, 2015; W.
Liu et al., 2017). Participants were recruited from Southwest University
by means of the campus network, advertisements on bulletin boards
and leaflets, or through face-to-face communications on campus. Before
enrolling in the study, each participant was screened with a set of ex-
clusion procedures involving self-reported questionnaires as well as
structured and semi-structured interviews.

The original sample included 443 participants. Seventeen partici-
pants were excluded from the final analysis due to a creativity score two
standard deviations lower or higher than the average score. The re-
maining sample of 416 participants included 225 females (54%) with
an average age of 20 years (SD = 1.26 years). All participants were
required to be right-handed, and none had a history of psychiatric
disorder, cognitive disability, substance abuse, or MRI contra-
indications. This research project was approved by the Southwest
University Brain Imaging Center Institutional Review Board, and
written informed consent was obtained from each participant.
Participants received payment depending on time and tasks completed.

2.2. Materials

2.2.1. Behavioral measures
2.2.1.1. Creativity assessment. The verbal form of the Torrance Tests of
Creative Thinking (TTCT; Torrance, 1966) was used to assess creativity
(i.e., divergent thinking ability). The TTCT was revised in Chinese by
the Shanghai Normal University (Ye et al., 1988), and the scoring guide
was slightly adjusted in recent studies because some responses were
produced in contemporary times that were non-existent in the original
guidelines (Chen et al., 2015; Wei et al., 2014). We administered the
following five tasks out of the Chinese version of the TTCT: generating
questions; causes and consequences; improving products; alternate
uses; and manipulating objects. The TTCT provides a total creativity
score as well as indices and scores for evaluating different measures of
creativity, assessed by divergent thinking abilities, which includes (a)
fluency (the number of meaningful and relevant responses, which is
associated with the ability to generate and consider several different
possibilities), (b) flexibility (the number of different categories of
responses, which reflects the ability to shift between conceptual
fields), and (c) originality (the degree of originality of the responses,

which is associated with thinking “outside of the box”).
Three trained raters scored the creative quality of all responses. The

three raters majored in psychology and were blind to the goal of this
research. First, they were trained to master the method of manual
scoring of the responses. Then, they independently assessed all re-
sponses of 30 participants and yielded relatively uniform scoring cri-
terion through structured discussions. This step was used to adjust the
scoring guide for flexibility in the present sample, such as to how to
evaluate a response that was nonexistent in the original guidelines.
Finally, raters were asked to assess the responses of all participants
based on these guidelines, and their inter-rater correlation coefficient
was significant (ICC> .90).

Latent variable analysis was applied to extract factor scores for each
participant on the three DT measures (fluency, flexibility, and origin-
ality) using Mplus 7.4. A strength of this approach, compared to com-
puting averages, is that it models error variance separately from true
measurement variance, leading to a more robust and reliable assess-
ment of effect size (Klein, 2011). In addition to modelling the three DT
measures separately, we also specified a higher-order latent model that
included these three measures as lower-order indicators. We thus ex-
amined unique relationships between the three DT measures (fluency,
flexibility, and originality), as well as their combined contribution, and
network controllability measures.

2.2.1.2. Intelligence assessment. To adjust for the effect of general
intelligence on creativity, we assessed intelligence with the Combined
Raven's Test (CRT), a widely adopted measure administered to Chinese
individuals between the ages of 5 and 75 (Li et al., 1989; Qian et al.,
1997; Wang et al., 2007). The CRT is based on Raven's Color
Progressive Matrices (Raven, 1958) and Raven's Standard Progressive
Matrices (Raven, 1960). It contains 72 items in 6 segments,
corresponding to the Color Progressive Matrices lists A, AB, and B,
and the Standard Progressive Matrices lists C, D, and E in the original
Raven matrices. The CRT for Adults in China (CRT-AC2) has shown
good reliability and validity, and the Chinese norms for CRT-AC2 was
established from a sample of 2526 people (aged 17–64 years) from 20
provinces in China (Qian et al., 1997).

The raw scores of the CRT are computed by summing the number of
correct responses, and the distribution of participants is calculated with
percentiles that vary from 0 to 100 in the different age groups. The
percentiles were converted to z-scores using a z-table and the standard
CRT scores (mean = 100 and SD = 15) were calculated according to
the Norm for Chinese Adult by Tianjin Medical University (Qian et al.,
1997; Wang et al., 2007).

2.2.2. MRI data acquisition
Imaging data were collected using a 12-channel head coil on a

Siemens 3 T Trio scanner (Siemens Medical Systems, Erlangen,
Germany) at the Brain Imaging Center, Southwest University. High-
resolution, three-dimensional T1-weighted structural images were ob-
tained using a Magnetization Prepared Rapid Acquisition Gradient-echo
(MPRAGE) sequence (TR/ TE = 1900 ms/2.52 ms, FA = 9°, resolution
matrix = 256× 256; slices = 176; thickness = 1.0 mm; voxel size = 1
× 1 × 1 mm3). Diffusion tensor images were obtained using a diffu-
sion-weighted, single shot, spin echo, EPI sequence (TR/TE = 11,000/
98 ms, matrix = 128 × 128, field of view = 256 × 256 mm, voxel size
= 2 × 2 × 2 mm3, 60 axial slices, 2 mm slice thickness, b value 1 =
0 s/mm2, b value 2 = 1000 s/mm2) in 30 directions and repeated ac-
quisition of diffusion-weighted imaging data three times to increase the
signal-to-noise ratio.

DTI data were reconstructed in DSI Studio (www.dsi-studio.
labsolver.org) using q-space diffeomorphic reconstruction (QSDR; Yeh
et al., 2011). QSDR first reconstructs diffusion-weighted images in na-
tive space and computes the quantitative anisotropy (QA) in each voxel.
These QA values are used to warp the brain to a template QA volume in
Montreal Neurological Institute (MNI) space using the statistical

Y.N. Kenett et al. Neuropsychologia 118 (2018) 79–90

82

http://www.dsi-studio.labsolver.org
http://www.dsi-studio.labsolver.org


parametric mapping nonlinear registration algorithm. Once in MNI
space, spin density functions were again reconstructed with a mean
diffusion distance of 1.25 mm using three fiber orientations per voxel.
Fiber tracking was performed in DSI Studio with an angular cutoff of
35, step size of 1.0 mm, minimum length of 10 mm, spin density
function smoothing of 0, maximum length of 400 mm and a QA
threshold determined by DWI signal in the colony-stimulating factor.
Deterministic fiber tracking using a modified FACT algorithm was
performed until 1,000,000 streamlines were reconstructed for each
individual. Anatomical scans were segmented using FreeSurfer (Fischl,
2012) and parcellated using the connectome mapping toolkit
(Cammoun et al., 2012). Based on previous research (Gu et al., 2015;
Hermundstad et al., 2013; Medaglia et al., 2016), a parcellation scheme
including 234 brain regions (Cammoun et al., 2012) was registered to
the B0 volume from each participant's DTI data. The B0 to MNI voxel
mapping produced via QSDR was used to map region labels from native
space to MNI coordinates. To extend region labels through the grey-
white matter interface, the atlas was dilated by 4 mm (Cieslak and
Grafton, 2014). Dilation was accomplished by filling non-labelled
voxels with the statistical mode of their neighbors’ labels. In the event
of a tie, one of the modes was arbitrarily selected. Each streamline was
labelled according to its terminal region pair. From these data, we
constructed structural connectivity networks that map streamline con-
nections between 234 cortical and sub-cortical regions. In these ana-
tomical connectivity matrices brain regions are defined as nodes, and a
link between two nodes represents the number of streamlines con-
necting them, normalized for their density (Sotiropoulos and Zalesky,
2017).

2.2.3. Network controllability analysis
To study the ability of a certain brain region to influence other re-

gions in different ways, we adopt the control theoretic notion of con-
trollability. Controllability of a dynamical system refers to the possi-
bility of driving the state of a dynamical system to a specific target state
by means of an external control input (Tang and Bassett, 2017). Classic
results in control theory ensure that controllability of the network is
equivalent to the controllability Gramian matrix, which determines
whether a linear system is controllable (Summers et al., 2016).

Besides ensuring controllability, the eigenvalues of the controll-
ability Gramian are a quantitative measure of the magnitude of the
control input that drives a network to a desired target state, and the
structure of the Gramian itself provides systematic guidelines for the
selection of control regions that can theoretically optimize cognitive
functions. While the magnitude of the control input may not be the
unique feature to take into account when controlling brain dynamics
(Kumar et al., 2014), it allows us to better understand the relationship
between the anatomical organization of the brain and its dynamics.
Here, this allows us to isolate the control role of each region separately
for each participant and relate it with our behavioral measures. A rig-
orous mathematical formulation of network controllability in brain
networks can be found in Gu et al. (2015). From the Gramian matrix,
different controllability measures can be computed for each node (brain
region) in the network. Here, based on previous research of network
controllability in brain networks, we compute for each participant and
each brain region their average controllability, modal controllability,
and boundary controllability (Gu et al., 2015; Medaglia et al., 2016;
Pasqualetti et al., 2014).

Average controllability identifies brain regions that, on average, can
drive the system into different states with little effort (input energy). A
state can be defined as the vector of neurophysiological activity mag-
nitudes across brain regions at a single time point. Thus, regions with
high average controllability can move the brain to many easily reach-
able states (Fig. 1D). Thus, these regions may be important in allowing
the brain to move smoothly between many cognitive functions that
require little cognitive effort. Previous work has identified brain regions
that demonstrate high average controllability, such as the precuneus,

posterior cingulate, superior frontal, paracentral, precentral and sub-
cortical structures (Gu et al., 2015).

Modal controllability identifies brain regions that can drive the brain
into different states that require high effort to achieve (those which
require substantial input energy). Thus, regions with high modal con-
trollability can move the brain to many difficult to reach states
(Fig. 1E). From a cognitive perspective, these regions may be important
in switching the brain between functions that require significant cog-
nitive effort. Previous work has identified brain regions that demon-
strate high modal controllability, such as the postcentral, supramar-
ginal, inferior parietal, pars orbitalis, medial orbitofrontal and rostral
middle frontal cortices (Gu et al., 2015).

Boundary controllability identifies brain regions that can drive the
system into states where different cognitive systems are either coupled
or decoupled (Fig. 1F). From a cognitive perspective, these regions
could be important in gating, synchronizing or otherwise manipulating
information across different cognitive processes. Previous work has
identified brain regions that demonstrate high boundary controllability,
such as the rostral middle frontal, lateral orbitofrontal, frontal pole,
medial orbitofrontal, superior frontal and anterior cingulate cortices
(Gu et al., 2015).

Boundary controllability identifies network nodes that lie at the
boundaries between network communities, as defined across all pos-
sible levels of hierarchical modularity in a network (Tang and Bassett,
2017). As such, an initial identification of brain modules (or commu-
nities) is required. While data-driven approaches have been developed
to achieve such an identification, identifying brain modular organiza-
tion remains an open challenge (see Medaglia et al., 2016). Here we
chose to side step this issue and use a modular assignment that was
computed via a data-driven approach that analyzed a large independent
sample of resting state functional data using the same parcellation atlas.
This approach, based on the method developed by Mišić et al. (2015),
uses a consensus analysis to identify a partition that maximizes the
modular partition of a large sample of independent datasets (Mišić
et al., 2015). This partition identified 12 systems which are in line with
neural systems identified in previous research (Dosenbach et al., 2010).
Using this a priori independent modularity partition controls for the
stochastic nature of the boundary controllability method and is justified
by the identified relation between anatomical connectivity and resting
state functional data (Honey et al., 2009).

2.2.4. Analysis overview
Our analysis process is as follows (Fig. 1): We defined anatomical

brain networks by subdividing the entire brain into 234 anatomically
distinct brain regions (network nodes) in a commonly used anatomical
atlas (Cammoun et al., 2012; Daducci et al., 2012; Hagmann et al.,
2008). Following prior work (Bassett et al., 2011; Gu et al., 2015;
Hermundstad et al., 2013, 2014), we connected nodes (brain regions)
by the number of white matter streamlines identified by a commonly
used deterministic tractography algorithm (Cieslak and Grafton, 2014).
This procedure results in sparse, weighted, undirected structural brain
networks for each participant. To control for volume confounds be-
tween pairs of brain regions i and j, streamline counts were normalized
by dividing by the sum of streamlines brain region i has, which resulted
in a measure of streamline density (Medaglia et al., 2016). Next, a
simplified model of brain dynamics was applied to simulate network
control and quantify average, modal, and boundary controllability for
each brain region for each participant, as described above (Gu et al.,
2015; Tang and Bassett, 2017). Intuitively, a node's average and modal
controllability values are negatively related (Gu et al., 2015; Wu-Yan
et al., 2017). To verify this, we computed the correlations between
average and modal controllability across all participants. This revealed
a nearly perfect negative correlation between raw average and modal
controllability scores in our dataset (average correlation = − .9992,
range of correlations = − .9992 - − .9402, all p's < .001).

We then conducted a whole-brain correlation analysis between the
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behavioral measures and each of the network controllability measures
for all brain regions. Previous studies have shown that raw boundary
scores are difficult to compare across participants. This is resolved by
assigning a rank boundary value for each of the nodes. Therefore, we
conducted a Spearman correlation analysis for boundary controllability
and a Pearson's correlation analysis for average and modal controll-
ability, controlling for multiple comparisons by calculating the False
Discovery Rate (FDR; Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001) with a false positive rate of 0.05. The brain networks
were then visualized via the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/; Xia et al., 2013). Anatomical labels were determined
using the Brainnetome Atlas (http://atlas.brainnetome.org), which uses
state-of-the-art multimodal neuroimaging techniques to provide a cur-
rent fine-grained, cross-validated atlas and contains information on
both anatomical and functional connections (Fan et al., 2016).

3. Results

We first computed the correlations between all behavioral measures
analyzed (Table 1). As expected, all three divergent thinking measures
were highly correlated with each other (Table 1). Furthermore, a sig-
nificant negative correlation was found between the CRT and the latent
measure of fluency. Contrary to previous studies (Jauk et al., 2013), no
significant correlation was found between the intelligence measure, as
measured with the CRT, and the compiled latent creativity, as measured
with DT, measures.

We then applied the network controllability analysis by contrasting
the different measures of network controllability and brain regions in
the latent CRT and DT measures. Next, we conducted the same analysis
for the different DT measures – fluency, flexibility, and originality.
Despite the DT measures being highly correlated, this analysis allowed
us to examine any possible differences between them in relation to

network controllability and creativity. Such an approach allowed us to
first contrast network controllability in intelligence and creativity and
then to more sensitively examine network controllability in the dif-
ferent dimensions of creativity that were measured.

3.1. Network controllability related to intelligence and creativity

3.1.1. Intelligence
The correlation analysis between the CRT measure and the network

controllability measures identified only two brain regions that survived
FDR correction (Table 2 and Fig. 2). A brain region within the right
Inferior Parietal Lobe (IPL) exhibited a significant positive correlation
with average controllability (adjusted p< .02) and a significant nega-
tive correlation with modal controllability (adjusted p< .02). Fur-
thermore, the left Retrosplenial Cortex (RSC) exhibited a significant
negative correlation with boundary controllability (adjusted p< .03).

3.1.2. Creativity
The correlation analysis between the latent DT measure and the

network controllability measures revealed several brain regions that
survived the FDR correction (Table 2 and Fig. 2). This analysis revealed
three brain regions that exhibited a significant negative correlation
with average controllability and a significant positive correlation with
modal controllability: An area in the right dorsolateral Pre-Frontal
Cortex, the right Inferior Frontal Junction (IFJ; average: adjusted
p< .001; modal: adjusted p< .001), the right posterior Medial Frontal
Gyrus (pMFG; average: adjusted p< .04; modal: adjusted p< .04); and
the left Fusiform area (average: adjusted p< .04; modal: adjusted
p< .04). Furthermore, this analysis revealed a significant positive
correlation with several post-central brain regions and boundary con-
trollability (all adjusted p's < .04) and a brain region in the left Su-
perior Temporal Gyrus (STG; adjusted p< .03).

3.2. Network controllability related to fluency, flexibility, and originality

Next, we conducted a similar analysis on the three different DT
measures: fluency, flexibility, and originality. The aim of this analysis
was to examine any differences in the relation between them and net-
work controllability measures.

3.2.1. Fluency
The correlation analysis between the fluency measure and the net-

work controllability measures found two brain regions that survived

Fig. 1. Overview of methods: (A) We performed diffusion tractography for each participant, and (B) applied a whole-brain parcellation to identify anatomical divisions. (C) We
constructed an anatomical connectivity matrix that represents the number of streamlines between pairs of regions, normalized by density. We defined a simplified model of brain
dynamics and simulated network control to quantify (D) average, (E) modal and (F) boundary controllability for each node (brain region) in the network for each participant.

Table 1
Correlation analysis between all behavioral measures.

CRT DT Fluency Flexibility Originality

CRT – − .04 − .19*** .09 .07
DT – .95*** .88*** .90***

Fluency – .77*** .80***

Flexibility – .76***

Originality –

*** p< .001.
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FDR correction (Table 3 and Fig. 3). The right IFJ exhibited a significant
negative correlation with average controllability (adjusted p< .01) and
a significant positive correlation with modal controllability (adjusted
p< .01). Furthermore, the right Medial Temporal Gyrus (MTG) ex-
hibited a significant positive correlation with boundary controllability
(adjusted p< .02).

3.2.2. Flexibility
The correlation analysis between the flexibility measure and the

network controllability measures found several brain regions that sur-
vived FDR correction (Table 3 and Fig. 3). This analysis revealed sev-
eral brain regions that exhibited a significant negative correlation with
average controllability and a significant positive correlation with modal
controllability: The right IFJ (average: adjusted p< .001; modal: ad-
justed p< .001), three brain regions (one anterior, two posterior) in the
right MFG (average: all adjusted p's< .03; modal: all adjusted p's<
.03), the left Fusiform (average: adjusted p< .02; modal: adjusted
p< .02), and the left posterior MTG (average: adjusted p< .02; modal:
adjusted p< .02). Furthermore, several brain regions exhibited a sig-
nificant positive correlation with boundary controllability: The right
MTG (adjusted p< .049), three brain regions in the post-central gyrus
(all adjusted p's < .04), and the left STG (adjusted p< .049).

3.2.3. Originality
The correlation analysis between the originality measure and the

network controllability measures found several brain regions that survived
FDR correction (Table 3 and Fig. 3). This analysis revealed two brain re-
gions that exhibited a significant negative correlation with average con-
trollability and a significant positive correlation with modal controll-
ability: The right IFJ (average: adjusted p<.001; modal: adjusted
p<.001), and two brain regions in the posterior Inferior Temporal Gyrus
(ITG; average: all adjusted p's<.04; modal: all adjusted p's<.04). Fur-
thermore, two brain regions exhibited a significant positive correlation
with boundary controllability: Two brain regions in the post-central gyrus
(all adjusted p's<.047), and the left STG (adjusted p<.045).

4. Discussion

In the current study, we applied a novel computational ap-
proach—network control theory—to quantify the relation between the
role of different brain regions in theoretically “driving” whole brain
neural dynamics related to creativity and intelligence. Current research
has implicated cognitive control processes in the ECN in both in-
telligence (Hearne et al., 2016; Jung and Haier, 2007) and creativity
(Beaty et al., 2016; Chrysikou, 2018; Chrysikou et al., 2014). However,
which specific control processes distinguish these cognitive abilities?

Table 2
Whole-brain correlation analysis between the two behavioral measures (CRT and DT) and network controllability measures (average, modal, and boundary).

Area Hemisphere BA x y Z Average Boundary Modal

CRT
IPL Right 40 43 − 51 46 .11* − .11*

RSC Left 29 − 7 − 44 18 − .15*

DT
IFJ Right 9 44 13 40 − .16*** .16***

pMFG Right 8 35 17 53 − .10* .10*

Fusiform Left 37 − 40 − 54 − 17 − .10* .10*

post-central gyrus Left 3 − 46 − 11 35 .14*

post-central gyrus Left 3 − 45 − 21 52 .14*

post-central gyrus Left 4 − 57 − 16 44 .14*

pSTG Left 22 − 53 − 44 10 .14*

Note – All correlation values reported survived FDR correction; x, y, z coordinates represent the peak maximal voxel in MNI space. Anatomical labels were determined using the
Brainnetome Atlas (http://atlas.brainnetome.org).

* p< .05.
*** p< .001.

Fig. 2. Relation between individual differences in average,
modal, and boundary controllability anatomical brain networks
to CRT and DT. Maps highlight brain regions with significant
correlation values that survived FDR correction. Warmer/colder
colors indicate a positive/negative correlation between controll-
ability and behavior.
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We argue that network control theory can advance our understanding
of the control processes evoked during fluid intelligence, as measured
with the CRT, and creativity, as measured with a battery of divergent
thinking tasks. Our approach is motivated by previous initial work that
has implicated the importance of average controllability in typical de-
velopment (Tang et al., 2017) and modal and boundary controllability
in cognitive control tasks (Medaglia et al., 2016, 2017). The current
study extends recent applications of control theory to cognitive neu-
roscience by revealing differential control effects of intelligence and
creativity—two high-level cognitive abilities that tap common and
distinct aspects of cognitive control (Benedek et al., 2014a, 2014b).

While these abilities involve complex non-linear neural dynamics,
previous studies demonstrated how a simplified linear model applied in
network control theory can be applied to study neural dynamics
(Muldoon et al., 2016; Tang and Bassett, 2017). In fact, a common
practice in the general application of control theory is to locally line-
arize models of dynamic processes (Liu et al., 2011). Finally, while our
work is theoretically focused on the ECN and DMN, we apply here a
whole brain analysis. Such an analysis is consistent with previous si-
milar studies, and is also aimed to identify different brain regions that
contribute to the neural dynamics, but are somehow obscured in
functional imaging studies.

Table 3
Whole-brain correlation analysis between the different DT measures (fluency, flexibility, and originality) and network controllability measures (average, modal, and boundary).

Area Hemisphere BA x y z Average Boundary Modal

Fluency
IFJ Right 9 44 13 40 − .15*** .15***

MTG Right 21 60 − 27 − 7 .15*

Flexibility
IFJ Right 9 44 13 40 − .14*** .14***

aMFG Right 10 34 53 7 − .11* .11*

pMFG Right 6 37 3 46 − .11* .11*

pMFG Right 8 35 17 53 − .11* .11*

Fusiform Left 37 − 40 − 54 − 17 − .12* .12*

pMTG Left 21 − 62 − 36 − 7 − .11* .11*

MTG Right 21 60 − 27 − 7 .13*

post-central gyrus Left 3 − 46 − 11 35 .14*

post-central gyrus Left 3 − 45 − 21 52 .14*

post-central gyrus Left 4 − 57 − 16 44 .14*

pSTG Left 22 − 53 − 44 10 .13*

Originality
IFJ Right 9 44 13 40 − .14*** .14***

pITG Left 20 − 54 − 21 − 29 − .10* .10*

pITG Left 20 − 54 − 40 − 21 − .10* .10*

post-central gyrus Left 3 − 46 − 11 35 .14*

post-central gyrus Left 3 − 45 − 21 52 .14*

pSTG Left 22 − 53 − 44 10 .13*

Note – All correlation values reported survived FDR correction; x, y, z coordinates represent the peak maximal voxel in MNI space. Anatomical labels were determined using the
Brainnetome Atlas (http://atlas.brainnetome.org).

* p< .05.
*** p< .001.

Fig. 3. Relation between individual differences in average, modal, and boundary controllability of anatomical brain networks to fluency, flexibility, and originality DT measures. Maps
highlight brain regions with significant correlation values that survived FDR correction. Warmer/colder colors indicate a positive/negative correlation between controllability and
behavior.
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4.1. Controllability, intelligence, and creativity

Regarding intelligence, we found that the right IPL exhibited a po-
sitive correlation with average controllability and a negative correla-
tion with modal controllability. Previous studies have found activation
in right IPL related to mental manipulation of information and working
memory tasks (Chochon et al., 1999; Klepousniotou et al., 2014; H. Liu
et al., 2017). In accordance with the parietal-frontal theory of in-
telligence (Jung and Haier, 2007), the higher average controllability in
the right IPL may facilitate processing of the multiple interpretations of
specific CRT stimuli. In this sense, the more the IPL can drive the brain
network into easy to reach states, the easier it may be to process de-
manding CRT stimuli.

We also found a negative correlation between intelligence and
boundary controllability within the retrosplenial cortex (RSC). The RSC
has been implicated in episodic memory, future simulation, spatial
cognition, and context processing, and it exhibits direct connections
with hippocampal, parahippocampal, and thalamic regions (Miller
et al., 2014; Spreng et al., 2009; Vann et al., 2009). According to Miller
et al. (2014), the RSC plays a role in processing complex cue associa-
tions (Miller et al., 2014), a function that appears crucial to perfor-
mance on the CRT task, which requires processing complex associations
between cues, and identifying a solution that adheres to such a complex
relation. The negative relation between intelligence and RSC boundary
controllability might reflect lower integration-segregation abilities in
this area for heightened performance in the CRT, possibly due to a
higher demand of more fluid spread of information across the dorsal-
RSC-hippocampus stream.

Regarding creativity, we found a consistent pattern of relations
between network controllability measures in specific brain regions as-
sociated with cognitive control, including a positive correlation with
modal controllability and a negative correlation with average con-
trollability. The brain region that showed the strongest correlations
between modal controllability and creativity measures was a region in
the right dorsolateral prefrontal cortex—the right Inferior Frontal
Junction (IFJ). Located at the junction of the inferior frontal sulcus and
the precentral sulcus (Muhle-Karbe et al., 2016), the left IFJ has been
shown to play a general role in creative tasks (Gonen-Yaacovi et al.,
2013) and has been specifically attributed to cognitive flexibility and
task switching (Harding et al., 2015; Yin et al., 2016). Recently,
Sebastian et al. (2016) showed that the right IFJ was associated with
the detection of salient stimuli and co-activated with both the ventral
and dorsal attention networks (Corbetta et al., 2008). This co-activation
pattern points to its potential role as a mediator between the stimulus-
driven ventral attention network and the goal-directed dorsal attention
network (Corbetta et al., 2008; Levy and Wagner, 2011). Furthermore,
in light of its role in switching between the ventral (stimulus based) and
dorsal (goal directed) attention systems, the IFJ may serve as a link
between DMN and ECN interactions, which have commonly been re-
ported in fMRI studies (Beaty et al., 2015, 2016). We also found a si-
milar pattern of relations within anterior posterior regions of the right
MFG, consistent with past work implicating this region in suppressing
inappropriate responses (Volle et al., 2012), shifting between response
alternatives (Chen et al., 2016; Gonen-Yaacovi et al., 2013), and facil-
itating dynamic coupling between ECN and DMN during divergent
thinking (Beaty et al., 2015, 2016; Zhu et al., 2017).

Our analysis further revealed a similar pattern of relations in the left
fusiform area. Research has shown that compared with baseline, ori-
ginal idea generation exhibits robust activation of the fusiform gyrus,
indicating its involvement in the formation of new associations
(Bechtereva et al., 2004; Chrysikou and Thompson-Schill, 2011; Ellamil
et al., 2012). For example, Chrysikou and Thompson-Schill (2011) ex-
amined neural activity during generating common versus uncommon
uses for objects. The authors found higher left fusiform activation when
participants were required to generate uncommon responses, possibly
reflecting a deeper retrieval process over visual features of objects. Our

findings support the findings of Chrysikou and Thompson-Schill (2011)
by finding a positive correlation between modal controllability and
flexibility in the left fusiform area.

Finally, we found a similar pattern of network controllability effects
within the left posterior MTG and ITG. The posterior MTG plays a key
role semantic control processes (Binder and Desai, 2011; Davey et al.,
2015, 2016; Noonan et al., 2013; Price, 2010) and is commonly im-
plicated in studies of creativity (Gonen-Yaacovi et al., 2013; Shen et al.,
2017). Recently, Davey et al. (2016) investigated the functional role of
the left posterior MTG in semantic control, and showed that the left
posterior MTG integrates information from the DMN and ECN. In this
context, higher modal controllability in the left posterior MTG may
facilitate inhibition of salient responses during verbal creativity tasks,
consistent with behavioral work linking inhibitory control and di-
vergent thinking abilities (Benedek et al., 2014a, 2014b). The role of
the posterior ITG (BA 20) in creativity is currently unclear (Benedek
et al., 2014a, 2014b; Zhu et al., 2017). A recent meta-analysis has
shown how this region plays a secondary role in language processing, as
a kind of marginal language processing region (Ardila et al., 2016). In a
recent large-scale patient study, Herbet et al. (2016) investigate the
anatomical factors that prevent full recovery of lexical retrieval in pa-
tients. The authors identify the importance of BA 20 and its underlying
white matter tracts to lexical retrieval deficits (Herbet et al., 2016).
Thus, higher modal controllability in the posterior ITG may facilitate
more lexical retrieval processes that increase originality.

4.2. Boundary controllability and creativity

We found a consistent correlation between boundary controllability
within sensorimotor areas and divergent thinking performance.
Although this finding was unexpected, it is consistent with a cognitive
embodiment perspective, which argues for the importance of sensor-
imotor simulations (Barsalou, 2008) in divergent thinking tasks. Sen-
sorimotor simulations refer to “the reenactment of perceptual, motor,
and introspective states acquired during experience with the world,
body, and mind” (Barsalou, 2008). Such simulation mechanisms have
been argued to act as a core computational factor in the brain (Binder,
2016). One such example is mental imagery, which involves the con-
struction of conscious representations in working memory (Pearson
et al., 2015). Finally, a recent study demonstrated how semantic re-
presentations of concepts bidirectionally converges with the sensor-
imotor system (Ekstrand et al., 2017). Thus, mental conceptual ma-
nipulations required in divergent thinking may involve the recruitment
of sensorimotor brain regions.

Neuroimaging studies have demonstrated how simulation plays a
central role in conceptual representations (Binder, 2016; Binder and
Desai, 2011; Binder et al., 2009). Surprisingly, however, no research
has directly examined the relation of sensorimotor simulations and
creativity (but see Cousijn et al., 2014a, 2014b, p. 10), despite the
flexible processes utilized in creativity on sensorimotor features of
concepts (Barsalou, 2008; Binder, 2016). In divergent thinking tasks,
the canonical measure of creative ability, participants are required to
simulate and manipulate concepts in order to generate novel, alter-
native, or uncommon uses to them (Runco and Acar, 2012). In a recent
study, Matheson et al. (2017) examine multivariate voxel pattern ac-
tivation when participants generate common and uncommon tool uses
to concrete tools. The authors found that common tool use is related to
categorical information in ventral stream areas while uncommon tools
use is related to action and visual information in dorsal stream areas,
thus demonstrating flexible activation within the “tool network”
(Matheson et al., 2017). The authors interpret this flexibility as con-
tributing to the generation of creative responses. In the context of
Matheson and colleagues, we argue that the positive correlations be-
tween boundary controllability in sensorimotor brain regions related to
individual differences in divergent thinking measures of flexibility and
originality, highlight the importance of integration of sensory and
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motor information in relation to creativity. Further research is required
to explore the role of sensorimotor simulation in divergent thinking.

We also found positive correlations between divergent thinking
measures and boundary controllability within temporal regions, in-
cluding the left posterior STG and right MTG. Activation in the left
posterior STG has been consistently found in creativity research
(Gonen-Yaacovi et al., 2013; Jung-Beeman, 2005; Mirous and Beeman,
2012; Shen et al., 2017). The left STG is considered to play a key role in
integrative processing via selective access to distributed cross-modal
representations, which is important in forming novel associations that
are required in semantic creativity tasks (Shen et al., 2017). The right
MTG has also been implicated in several creativity studies (Bashwiner
et al., 2016; Chen et al., 2016; Cousijn et al., 2014a, 2014b). For ex-
ample, a recent resting-state study found that divergent thinking ability
was related to increased functional connectivity between the right MTG
and post-central gyrus (Cousijn et al., 2014a, 2014b). Thus, higher
boundary controllability of this region could facilitate integration with
sensorimotor areas, which could in turn increase fluency and flexibility
of ideas that originate from sensorimotor simulations.

Taken together, our results highlight the different control processes
involved in intelligence and creativity. We found that intelligence was
related to a heightened ability to drive the brain into easy-to-reach
states and fluid spread of information within contextual association
regions (e.g., IPL and RSC). On the other hand, creativity was related to
a heightened ability to drive the brain into difficult to reach states, with
effects largely localized within regions that connect between bottom-up
and top-down processes (e.g., IFJ) and to integration/segregation pro-
cesses in sensorimotor areas.

4.3. Limitations and future directions

A few limitations of the current study are worth noting. First, de-
spite an established relation between intelligence and creativity (Jauk
et al., 2013), we only found a correlation between our measure of in-
telligence (CRT) and divergent thinking fluency (Table 1). In a previous
report of these behavioral data (from the same sample; Chen et al.,
2015), the authors suggested that this relation might be due to the focus
of the CRT on reasoning skills, which might be more similar in our
sample of college students. Importantly, studies that have found a
correlation between intelligence and creativity have done so only at a
latent level, based on several measures of intelligence (Beaty et al.,
2014; Benedek et al., 2014a, 2014b; Nusbaum and Silvia, 2011), and
not a single measure, as in the current study. Furthermore, previous
studies have also found a negative correlation between fluency and
intelligence (e.g., Beaty et al., 2014). Thus, future research is needed to
replicate our findings with other measures of creativity and in-
telligence. Finally, previous research has indicated differences in the
notion of creativity between Western and Eastern cultures (Niu and
Sternberg, 2002). Such differences may account for the pattern of the
behavioral results. Thus, our study requires future replication in a
Western society.

Another limitation concerns the method we used to measure
structural connectivity, which was based on DTI data. Past research
suggests that DTI may under-sample some white matter fibers, parti-
cularly those linking hemispheres or those that cross paths with other
fibers (Wedeen et al., 2008). This may also partially account for rela-
tively small correlations found in our data. Future efforts should apply
diffusion spectrum imaging to improve estimates of structural network
architecture.

Third, our boundary controllability analysis was based on an in-
dependent, a-priori brain modularity partition, which was based on a
modularity analysis of resting-state fMRI data (Mišić et al., 2015). Fu-
ture research is needed to establish a-priori partitions based on struc-
tural connectivity networks, which will increase the reliability and
validity of the boundary controllability analysis.

Finally, the ability of specific nodes in a network (such as

anatomical brain networks) to drive the system into a specific state has
been recently questioned (Menara et al., 2017; Tu et al., 2017). In the
current study, we were interested in investigating the theoretical notion
of network control theory and individual differences in creativity,
without committing to linking between cognitive control processes and
network controllability.

In conclusion, we applied a network control theory approach to
identify specific control strategies in specific brain regions as related to
intelligence and creativity. We found that intelligence is related to
driving the brain into easy to reach states within association cortices,
whereas creativity is related to driving the brain into difficult to reach
states within regions involved in DMN-ECN switching and sensorimotor
processing. Our work demonstrates the strength of this computational
approach and how it can shed unique light on cognitive control pro-
cesses involved in cognition, and highlights the role of white matter
anatomical connectivity on large scale functional dynamics in high-
level cognition.
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